Tables of Bond Lengths determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds

Frank H. Allen,* Olga Kennard, and David G. Watson

Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW Lee Brammer and A. Guy Orpen School of Chemistry, University of Bristol, Cantock's Close Bristol BS8 1TS Robin Taylor I.C.I. Plant Protection Division, Jealott's Hill Research Station, Bracknell, Berkshire RG12 6EY

The average lengths of bonds involving the elements H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, and I in organic compounds are reported.

The determination of molecular geometry is of vital importance to our understanding of chemical structure and bonding. The majority of experimental data have come from X-ray and neutron diffraction, microwave spectroscopy and electron diffraction. Over the years compilations of results from these techniques have appeared sporadically. The first major compilation was Chemical Society Special Publication No. 11: 'Tables of Interatomic Distances and Configuration in Molecules and Ions'.1 This volume summarized results obtained by diffraction and spectroscopic methods prior to 1956; a supplementary volume² extended this coverage to 1959. Summary tables of bond lengths between carbon and other elements were also published in Volume III of 'International Tables for X-Ray Crystallography'.³ Some years later the Cambridge Crystallographic Data Centre⁴ produced an atlas-style compendium⁵ of all organic, organometallic, and metal complex crystal structures published in the period 1960-1965. More recently a survey of geometries determined by spectroscopic methods⁶ has extended coverage in this area to mid-1977.

The production of further comprehensive compendia of Xray and neutron diffraction results has been precluded by the steep rise in the number of published crystal structures, as illustrated by Figure 1. Printed compilations have been effectively superseded by computerized databases. In particular the Cambridge Structural Database (CSD) now contains bibliographic, chemical and numerical results for *ca.* 55 000 organocarbon crystal structures. This machine-readable file fulfils the function of a comprehensive structure-by-structure compendium of molecular geometries. However the amount of data now held in CSD is so large that there is also a need for concise, printed tabulations of average molecular dimensions.

The only tables of average geometry in general use are those contained in the Chemical Society Special Publications^{1,2} of 1958 and 1965, which list mean bond lengths for a variety of atom pairs and functional groups. Since these early tables were based on data obtained before 1960, we have used CSD to prepare a new table of average bond lengths in organic compounds. The Table given here specificially lists average lengths for bonds involving the elements H, B, C, N, O, F, Si, P, S, Cl, As, Se, Br, Te, and I. Mean values are presented for 682 different bond types involving these elements. Average bond lengths in organometallic compounds and metal complexes will be presented in a later paper.

Methodology

Selection of Crystallographic Data.—All results given in the Table are based on X-ray and neutron diffraction results

1923-1964 year 1965 1970 1975 1980 1985

Figure 1. Growth of the Cambridge Structural Database 1965—1985 as no. of entries (nent) published in a given year

retrieved from the September 1985 version of CSD. Neutron diffraction data only were used to derive mean bond lengths involving hydrogen atoms. This version of CSD contained results for 49 854 single-crystals diffraction studies of organo-carbon compounds 10 324 of these satisfied the acceptance criteria listed below and were used in the averaging procedures.

(i) Structure is 'organic', *i.e.* belongs to CSD classes 1-65 or $70.^7$

(ii) Atomic co-ordinates for the structure have been published and are available in CSD.

(iii) Structure was determined from diffractometer data.

(iv) Structure does not contain unresolved numeric data errors from the original publication (such errors are usually typographical and are normally resolved by consultation with the authors).

(v) Structure was not reported to be disordered.

(vi) Only structures of high precision were included on the basis of *either* (a) crystallographic R factor was ≤ 0.07 and the reported mean estimated standard deviation (e.s.d.) for the C-C bond lengths was ≤ 0.010 Å (corresponds to AS flag = 1 or 2 in CSD), or (b) crystallographic R factor ≤ 0.05 and the mean e.s.d. for C-C bonds are not available in the database (AS = 0 in CSD).

(vii) Where the structure of a given compound had been determined more than once within the limits of (i)—(vi) then only the most precise determination was used.

Program System.—All calculations were performed on the University of Cambridge IBM 3081D computer using the

nent

7000

6000

programs BIBSER, CONNSER, RETRIEVE, GEOM78, and PLUTO78.4 A stand-alone program was written to implement the selection criteria, whilst a new program (STATS) was used for statistical calculations described below. It was also necessary to modify CONNSER to improve the precision with which it locates chemical substructures. In particular the program was altered to permit the location of atoms with specified coordination numbers. This was essential in the case of carbon so that atoms with co-ordination numbers 2, 3, and 4 (equivalent to formal hybridization states sp^1 , sp^2 , sp^3) could be distinguished easily and reliably. Considerable care was taken to ensure that the correct molecular fragment was located by GEOM78 in the generation of geometrical tabulations. This often involved the explicit specification of hydrogen atoms in fragments, and the extensive use of geometrical tests on valence and torsion angles. Considerable use was also made of chemical structural diagrams, which are available in the Cambridge inhouse version of CSD for ca. 65% of all entries. Chemical diagrams proved useful, for example, in identifying the various co-ordination environments commonly adopted by atoms such as As, B, P, etc.

Classification of Bonds.—The classification of bonds used in the Table is based on common functional groups, rings and ring systems, co-ordination spheres, *etc.* It is designed to: (i) appear logical, useful, and reasonably self-explanatory to chemists, crystallographers, and others who may use the Table; (ii) to permit a meaningful average value to be cited for each bond length. With reference to (ii), it was considered that a sample of bond lengths could be averaged meaningfully if: (a) the sample was unimodally distributed; (b) the sample standard deviation (σ) was reasonably small, ideally < ca. 0.02 Å; (c) there were no conspicuous outlying observations (those which occurred at $> 4\sigma$ from the mean were automatically eliminated from the sample by STATS, other outliers were inspected carefully); (d) there were no compelling chemical reasons for further subdivision of the sample.

Statistics.—Where there are less than four independent observations of a given bond length, then each individual observation is given explicitly in the Table. In all other cases the following statistics were generated by the program STATS.

(i) The unweighted sample mean, d, where equation (1) holds

$$d = \sum_{i=1}^{n} d_i / n \tag{1}$$

and d_i is the *i*th observation of the bond length in a total sample of *n* observations. Recent work ⁸⁻¹⁰ has shown that the unweighted mean is an acceptable (even preferable) alternative to the weighted mean, where the *i*th observation is assigned a weight equal to $1/\sigma^2(d_i)$. This is especially true where structures have been pre-screened on the basis of precision.

(ii) The sample median, m. This has the property that half of the observations in the sample exceed m, and half fall short of it.

(iii) The sample standard deviation, denoted here as σ , where equation (2) holds.

$$\sigma = \sum_{i=1}^{n} \left[(d_i - d)^2 / (n-1) \right]^{\frac{1}{2}}$$
(2)

(iv) The lower quartile for the sample, q_1 . This has the property that 25% of the observations are less than q_1 and 75% exceed it.

(v) The upper quartile for the sample, $q_{\rm u}$. This has the property that 25% of the observations exceed $q_{\rm u}$, and 75% fall short of it.

(vi) The number *n* of observations in the sample.

Figure 2. Effect of the removal of outliers (contributors which are $>4\sigma$ from the mean) for the C-C bond in Car-C=N fragments. Relevant statistics (see text) are:

Figure 3. Skewed distribution of B-F bond lengths in BF₄⁻ ions: $d = 1.365, m = 1.372, \sigma = 0.029, q_1 = 1.352, q_u = 1.390$ for 84 observations. Note that $d \neq m$ and that $q_1 q_u$ are asymmetrically disposed about the mean d

Figure 4. Resolution of the bimodal distribution of C-N bond lengths in Car-N(Csp^3)₂ fragments: (a) complete distribution, (b) distribution for planar N, mean valence angle at N > 117.5°, (c) distribution for pyramidal N, mean valence angle at N in the range 108—114°

 D

c

Se Si Te

C

As B Br

1 B	* 2	* 2	6	1	1	0	*	2			-																	
в	2	2	5					2	Z	+	2	+	†	+					c —	C		-		с —	-N		с—	-0
	0.		3	2	2	0	*	4	2	1	4	0	0	0		Csp ³	Csp ²	Car	Csp1	Csp ²	Car	Csp1	N(4)	N(3)	N(2)	N(1)	0(2)	0(1)
	ы	1	5	+	0	0	*	*	1	*	+	*	*	*	Csn ³	27	30	6	4				5	22	2		60	
		С	175	16	13	10	2	97	119	12	40	3	6	2	<i>p</i>	<u> </u>									-			
			СІ	*	0	0	*	*	1	2	1	*	2	1	Cs	sp ²	24	14	2					28	1		17	
			i	F	0	0	0	1	0	2	2	0	3			Co	r-	2	2				1	9	2		4	
					н	0	0	2	3	0	0	0	0	0			C	sp ¹ —	1									
							1	-	1	+		0	0						2	34				1	9			28
						•	<u> </u>		-		-	-	-					6	p =						_			
							N	15	18	15	8	*	6	*					Ca	r ≃	24			3	9			
								0	4	20	9	*	5	2						C.s	= ^ا م:	5			1	5		
									Ρ	2	3	1	1	*						-	-				<u> </u>			
										S	5	1	1	2														
										I	Se	1	0	+														
												Si	1	0														
													Te	*														
									0	N [13] 13 0 [4 P	P 2 S	R 13 13 13 0 0 4 20 9 P 2 3 S 5 Se	P 2 3 1 S 5 1 S 5 1 S 5 1 S 5 1	N 13 13 0 14 0 0 4 20 9 # 5 P 2 3 1 1 S 5 1 1 Se 1 0 Si Te Te	N 13 13 13 13 13 14 15 15 1 0 4 20 9 # 5 2 P 2 3 1 1 # S 5 1 1 2 Se 1 0 † Si 1 0 † Te #	I I I I I I I I I 0 4 20 9 # 5 2 P 2 3 1 1 # S 5 1 1 2 Se 1 0 † Si 1 0 † Te #	N 13 13 13 10 14 0 4 20 9 # 5 2 P 2 3 1 1 # S 5 1 1 2 Se 1 0 † Si 1 0 †	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Co Co Co Co Co Co Co Co Co Co	$Car \simeq [$ $Car = [$ $Car $	$Car \simeq 24$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Car \simeq 24$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Car \simeq \begin{bmatrix} 24 & 3 & 9 \\ 0 & 4 & 20 & 9 & * 5 & 2 \\ P & 2 & 3 & 1 & 1 & * \\ S & 5 & 1 & 1 & 2 \\ Se & 1 & 0 & † \\ Si & 1 & 0 \\ Te & * \end{bmatrix}$	$Car \simeq \begin{bmatrix} 24 & 3 & 9 \\ 3 & 9 & 5 & 2 \\ 0 & 4 & 20 & 9 & * & 5 & 2 \\ P & 2 & 3 & 1 & 1 & * \\ S & 5 & 1 & 1 & 2 \\ Se & 1 & 0 & + \\ Si & 1 & 0 \\ Te & * \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure 5. (a) Distribution of mean bond length values reported in the Table by element pair. An * indicates a bonded pair represented by less than four contributors in the original data set. A \dagger indicates bonded pairs located when restrictions on *R* factor and reported e.s.d. limits were lifted (see text). (b) Distribution of mean bond length values reported in the Table for C–C, C–O, and C–N

The statistics given in the final Table correspond to distributions for which the automatic 4σ cut-off (see above) had been applied, and any manual removal of additional outliers (an infrequent operation) had been performed. In practice a very small percentage of observations were excluded by these methods. The major effect of removing outliers is to improve the sample standard deviation, as shown in Figure 2 in which a single observation is deleted.

The statistics chosen for tabulation effectively describe the distribution of bond lengths in each case. For a symmetrical, normal distribution: the mean (d) will be approximately equal to the median (m); the lower and upper quartiles (q_1, q_u) will be approximately symmetric about the median: $m-q_1 \simeq q_u-m$, and 95% of the observations may be expected to lie within $\pm 2\sigma$ of the mean value. For a skewed distribution d and m may differ appreciably and q_1 and q_u will be asymmetric with respect to m. When a bond-length distribution is negatively skewed as in Figure 3, *i.e.* very short values are more common than very long values, then it may be due to thermal-motion effects; the distances used to prepare the Table were not corrected for thermal libration.

In a number of cases the initial bond-length distribution was clearly bimodal, as in Figure 4a. All cases of biomodality were resolved on chemical grounds before inclusion in the Table, on the basis of hybridization, conformation-dependent conjugative interactions, *etc.* For example the histogram of Figure 4a was resolved into the two discrete unimodal distributions of Figures 4b,c which correspond to planar $N(sp^2)$ and pyramidal $N(sp^3)$, respectively. The mean valence angle at N was used as the discriminator, with a range of $108-114^{\circ}$ for $N(sp^3)$ and $\geq 117.5^{\circ}$ for $N(sp^2)$.

Content and Arrangement of the Table

The upper triangular matrix of Figure 5a shows the 120 possible element pair combinations which can be formed from the 15 elements: As, B, Br, C, Cl, F, H, I, N, O, P. S, Se, Si, Te. Figure 5a

contains the number of discrete average bond lengths given in the Table for each element pair. A total of 682 average values are cited for 65 element pairs, of which 511 (75%) involve carbon. Bond length values from individual structures are given for a further 30 element pairs, indicated by * in Figure 5a. Individual structures are identified by their CSD reference code (*e.g.* BOGSUL) and short-form literature references, ordered alphabetically by reference code, are given in Appendix 2. A full bibliographic listing is available as Supplementary Publication No SUP 56701 (12 pp.).* For 8 element pairs the acceptance criterion (vi) was relaxed to include all available structures, irrespective of precision. These entries are denoted by † in the Table. No bonds were found for 25 element pairs within the subset of CSD used in this study.

Each entry in the Table contains nine columns, of which six record the statistics of the bond length distribution described above. The content of the remaining three columns: Bond, Substructure, Note, are now described.

Ordering of Entries: the 'Bond' Column.—For an element pair X-Y the primary ordering is alphabetic by element symbols according to the rows of Figure 5a, *i.e.* X changes slowest, Y fastest. The complete sequence runs from As-As to Te-Te with bonds involving carbon in their natural position: As-C...C-C...C-Te. Within a given X-Y pair a secondary ordering is based on the co-ordination numbers (j) of X and Y, and on the nature of the bond between them. The bond definition is of the form X(j)-Y(j), with j decreasing fastest for Y, slowest for X, and with all single bonds preceding any multiple bonds. For carbon the formal hybridization state replaces (but is equivalent to) the co-ordination number and it is for this element that the ordering rules are most clearly required. The ordering of the most populous C-C, C-N, C-O sections is illustrated in Figure 5b. The 13 possible C-C combinations

^{*} For details of Supplementary Publications see Instructions for Authors, J. Chem. Soc., Perkin Trans. 2, 1987, Issue 1.

tetrathiafulvalene

thiophene

Figure 6. Alphabeticized index of ring systems referred to in the Table; the numbering scheme used in assembling the bond length data is given where necessary

thietane

follow the sequence Csp^3-Csp^3 , Csp^3-Csp^2 , Csp^3-Car , Csp^3-Csp^3 , Csp^3-Csp^2 , Csp^2-Csp^2 , Csp^2-Csp^2 , Csp^2-Csp^2 , Csp^2-Csp^2 , Car-Car, $Car-Csp^1$, Csp^1-Csp^1 , $Csp^2=Csp^2$, $Car \simeq Car$, $Csp^1\equiv Csp^1$. The symbol Carrepresents aryl carbon in six-membered rings, which is treated separately from Csp^2 throughout the Table. The symbol \simeq is used to indicate a delocalized double or aromatic bond according to context.

Definition of 'Substructures'.---The chemical environment of each bond is normally defined by a linear formulation of the substructure. The target bond is set in bold type, e.g. Car-C=N (aryl cyanides); C-CH₂-O-Car (primary-alkyl aryl ethers); (C-O)₂- $P(\simeq O)_2$ (phosphate diesters). Occasionally the chemical name of a functional group or ring system is used to define bond environment, e.g. in naphthalene, C2-C3; in imidazole, N1-C2.

To avoid any possible ambiguity in these cases, we include numbered chemical diagrams in Figure 6. A combination of chemical name and linear formulation is often employed to increase the precision of the definition, *e.g.* NH_2 -C=O in acylic amides; C=C-C(=O)-C=O in benzoquinone. Finally, for very simple ions, the accepted conventional representation is deemed to be sufficient, *e.g.* in NO_3^- in SO_4^- , *etc.*

The chemical definition of substructure may be followed by brief qualifying information, concerning substitution, conformational restrictions, *etc.* For example: Csp^3 - Csp^3 : in cyclobutane (any substituent); X-C-F₃ (X = C, H, N, O); Car-NH-Csp³ (Nsp³: pyramidal). Where the generic symbol X is unqualified it denotes any element type, including hydrogen. If the qualifying information is too extensive then it will be given as a Table footnote (see below).

The 'Substructure' column is designed to convey as much unambiguous information as possible within a small space. For Csp^3 we have employed the short forms C* and C#. C* indicates Csp^3 whose bonds, additional to those specified in the linear formulation, are to C or H atoms only. C*-OH would then represent the group of alcohols CH₃-OH, -C-CH₂-OH, -C₂-CH-OH, and -C₃-C-OH. C* is frequently used to restrict the secondary environment of a given bond to avoid the perturbing influences of *e.g.* electronegative substituents. The symbol C# is merely a space-saving device to indicate any Csp³ atom and includes C* as a subset.

Use of the 'Note' Column.—The 'Note' column refers to the footnotes collected in Appendix 1. These record additional information as follows: (a) additional details concerning the chemical definition of substructures, *e.g.* the omission of three- and four-membered rings; (b) statements of geometrical constraints used in obtaining the cited average, *e.g.* definition of planarity or pyramidality at N, torsional constraints in conjugated systems; (c) any peculiarities of a particular bond length distribution, *e.g.* sample dominated by $C^* = methyl$; (d) references to previously published surveys of crystallographic results relevant to the substructure in question. We do not claim that these references are in any way comprehensive and we would be grateful to authors for notification (to F. H. A.) of any omissions. This will serve to improve the content of any future version of the Table.

Discussion

It should be remembered that this Table has been derived from the organic section of CSD. We are aware that a number of organic bond types which occur very frequently in organometallic compounds and metal complexes (e.g. $C \simeq C$ in cyclopentadienyl, C-P in triphenylphosphine, etc.) are either absent or poorly represented in this work. These omissions will be rectified in Part 2 which is in preparation. We also note that certain bond types listed here (e.g. As-O, Si-O, Si-N, etc.) will occur with greater frequency in inorganic compounds. The interested reader is referred to the Inorganic Crystal Structure Database¹¹ for a machine-readable compendium of more relevant structural data.

The tabulation given here represents the first stage in a major project designed to obtain the average geometries of functional groups, rigid rings and the low-energy conformations of flexible rings. Details of mean bond lengths, valence angles, and conformational preferences in a wide range of substructures will form the basis of a machine-readable 'fragment library' for use in molecular modeling and other areas of research. The systematic survey will be extended to derive information about distances, angles, directionality, and environmental dependence of hydrogen bonds and non-bonded interactions.

Table.								
Bond	Substructure	d	m	σ	q_1	q_{u}	n	Note
As(3)–As(3)	X ₂ -As-As-X ₂	2.459	2.457	0.011	2.456	2.466	8	
As-B	see CUDLOC (2.065), CUDLUI (2.041)							
As-Br	see CODDEE, CODDII (2.346–3.203)							
As(4)–C	X ₃ -As-CH ₃	1.903	1.907	0.016	1.893	1.916	12	
	$(X)_2(C,O,S=)As-Csp^3$	1.927	1.929	0.017	1.921	1.937	16	
	As-Car in Ph_4As^+	1.905	1.909	0.012	1.897	1.912	108	
	$(X)_2(C,O,S=)$ As-Car	1.922	1.927	0.016	1.908	1.934	36	
As(3)–C	X_2 -As-Csp ³	1.963	1.965	0.017	1.948	1.978	6	
	X_2 -As-Car	1.956	1.956	0.015	1.944	1.964	41	
As(3)–Cl	X ₂ -As-Cl	2.268	2.256	0.039	2.247	2.281	10	
As(6)–F	in AsF ₆	1.678	1.676	0.020	1.659	1.695	36	
As(3)–I	see OPIMAS (2.579, 2.590)							
As(3)-N(3)	X_2 -As-N- X_2	1.858	1.858	0.029	1.839	1.873	19	
As(4) = N(2)	see TPASSN (1.837)							
As(4)–O	$(X)_{2}(O=)As-OH$	1.710	1.712	0.017	1.695	1.726	6	
As(3)–O	see ASAZOC, PHASOC01 (1.787-1.845)							
As(4)=O	X ₃ -As=O	1.661	1.661	0.016	1.652	1.667	9	
As(3) - P(3)	see BELNIP (2.350, 2.362)							†
As(3) - P(3)	see BUTHAZ10 (2.124)							+
As(3)-S	X ₂ -As-S	2.275	2.266	0.032	2.247	2.298	14	
As(4)=S	$X_3 - As = S$	2.083	2.082	0.004	2.080	2.086	9	
As(3)-Se(2)	see COSDIX, ESEARS (2.355-2.401)							+
As(3)-Si(4)	see BICGEZ, MESIAD (2.351-2.365)							+
$A_{s(3)}-T_{e(2)}$	see ETEARS (2.571, 2.576)							÷
B(n)-B(n)	n = 5-7 in boron cages	1.775	1.773	0.031	1.763	1.786	688	I.
B(4) - B(4)	see CETTAW (2.041)							
B(4) - B(3)	see COFVOI (1.698)							
B(3) - B(3)	X_{a} - B - B - X_{a}	1 701	1 700	0.014	1 691	1712	8	
B(6) - Br		1.967	1.971	0.014	1.954	1.979	7	+
B(4)-Br		2.017	2.008	0.031	1.990	2.044	15	÷
B(n) - C	n = 5 - 7; B -C in cages	1.716	1.717	0.020	1.707	1.728	96	,
2() C	$n = 3-4$: B -Cs p^3 not cages	1.597	1.599	0.022	1.585	1.611	29	1
	n = 4: B -Car	1.606	1.607	0.012	1.596	1.615	41	-

Bond	Substructure	d	т	σ	q_1	$q_{\rm u}$	п	Note
	n = 4: B -Car in Ph ₄ B ⁻	1.643	1.643	0.006	1 641	1 645	16	
B(n)-C	n = 3: B -Car	1.556	1.552	0.015	1.546	1.566	24	
B(n)-Cl	B (5)- Cl and B (3)- Cl	1.751	1.751	0.011	1.743	1.761	14	
	B (4)– C I	1.833	1.833	0.013	1.821	1.843	22	
B(4)–F	$\mathbf{B} - \mathbf{F}$ (B neutral)	1.366	1.368	0.017	1.356	1.375	25	
B(A)_I	B $-\mathbf{F}$ in \mathbf{BF}_4 see TMPRTI (2.220, 2.253)	1.365	1.372	0.029	1.352	1.390	84	
B(4) - N(3)	$X_{2}-B-N(=C)(X)$	1 61 1	1.617	0.013	1 601	1 625	8	
2(1) 1(0)	in pyrazaboles	1.549	1.552	0.015	1.536	1.560	10	
B(3)–N(3)	X_2 - B -N-C ₂ : all coplanar	1.404	1.404	0.014	1.389	1.408	40	2
	for $\tau(BN) > 30^\circ$ see BOGSUL, BUSHAY,							
	CILRUK (1.434—1.530)	1 4 4 7	1 4 4 2	0.012	1 425	1 470		
B(4)_O	$S_2 - D - N - A_2$ $B^ O$ in BO^-	1.447	1.443	0.013	1.435	1.470	14	
D(4)-O	for neutral B–O see Note 3	1.408	1.400	0.022	1.455	1.4/7	24	3
B(3)-O(2)	X ₂ - B -O-X	1.367	1.367	0.024	1.349	1.382	35	5
$\mathbf{B}(n) - \mathbf{P}$	n = 4: B - P	1.922	1.927	0.027	1.900	1.954	10	
	n = 3: see BUPSIB10 (1.892, 1.893)							
B(4)–S	B(4)-S(3)	1.930	1.927	0.009	1.925	1.934	10	
B(3) S	B(4)-S(2) N B S	1.896	1.896	0.004	1.893	1.899	6	
D(3)-3	(=X-)(N-)B-S	1.800	1.800	0.010	1.733	1.810	20	
Br-Br	see BEPZEB, TPASTB	2.542	2.548	0.015	2.526	2.551	4	
Br–C	Br-C*	1.966	1.967	0.029	1.951	1.983	100	4
	Br –Csp ³ (cyclopropane)	1.910	1.910	0.010	1.900	1.914	8	
	$Br-Csp^2$	1.883	1.881	0.015	1.874	1.894	31	4
	Br -Car (mono-Br + m,p -Br ₂)	1.899	1.899	0.012	1.892	1.906	119	4
-Br(2) - C1	DI – Car $(0$ -DI ₂) see TFACBR (2 362—2 402)	1.873	1.672	0.011	1.004	1.884	8	4
Br-I	see DTHIBR10 (2.646), TPHOSI (2.695)							,
Br–N	see NBBZAM (1.843)							
Br–O	see CIYFOF	1.581	1.581	0.007	1.574	1.587	4	
Br-P	see CISTED (2.366)							
Br-S(2)	see BEMLIO (2.206)							†
$BI = S(3)^+$	see CIWYIQ $(2.435, 2.455)$							T +
Br–Se	see CIFZUM (2.508, 2.619)							1
Br-Si	see BIZJAV (2.284)							
Br–Te	In Br_6Te^{2-} see CUGBAH (2.692–2.716)							
	Br -Te(4) see BETUTE10 (3.079, 3.015)							
C 3 C 3	Br-Te(3) see BTUPTE (2.835)	1 510						
Csp ⁺ -Csp ⁺	$C_{\#}$ - CH_2 - CH_3	1.513	1.514	0.014	1.507	1.523	192	
	$(C_{\#})_{2}$ -CH-CH ₃ (C#),-C-CH ₃	1.534	1.520	0.013	1.518	1.534	825	
	C#-CH ₂ -CH ₂ -C#	1.524	1.524	0.011	1.516	1.532	2 4 5 9	
	$(\ddot{C}\#)_2 - \ddot{C}H - C\ddot{H}_2 - \ddot{C}\#$	1.531	1.531	0.012	1.524	1.538	1 217	
	$(C\#)_3$ -C-CH ₂ -C#	1.538	1.539	0.010	1.533	1.544	330	
	$(C\#)_2$ -CH-CH- $(C\#)_2$	1.542	1.542	0.011	1.536	1.549	321	
	$(C_{\#})_3 - C - C_{\#} - (C_{\#})_2$	1.550	1.550	0.011	1.549	1.562	215	
	C^*-C^* (overall)	1.530	1.530	0.025	1.500	1.539	5 777	56
	in cyclopropane (any subst.)	1.510	1.509	0.026	1.497	1.523	888	7
	in cyclobutane (any subst.)	1.554	1.553	0.021	1.540	1.567	679	8
	in cyclopentane (C,H-subst.)	1.543	1.543	0.018	1.532	1.554	1 641	
	in cyclohexane (C,H-subst.)	1.535	1.535	0.016	1.525	1.545	2 814	7
	cyclobutyl-C* (exocyclic)	1.518	1.518	0.019	1.505	1.531	366	8
	cyclopentyl-C* (exocyclic)	1.540	1.541	0.010	1.519	1.549	956	0
	cyclohexyl-C* (exocyclic)	1.539	1.538	0.016	1.529	1.549	2 682	
	in cyclobutene (any subst.)	1.573	1.574	0.017	1.566	1.586	25	8
	in cyclopentene (C,H-subst.)	1.541	1.539	0.015	1.532	1.549	208	
	in cyclonexene (C,H-subst.)	1.541	1.541	0.020	1.528	1.554	586	0
	in aziridine	1.400	1.400	0.015	1.458	1.4/4 1 406	249 67	9 Q
	in oxetane	1.541	1.541	0.019	1.527	1.557	16	7
	in azetidine	1.548	1.543	0.018	1.536	1.558	22	
	oxiranyl-C* (exocyclic)	1.509	1.507	0.018	1.497	1.519	333	9
$C \rightarrow C^{2}$	aziridinyl-C* (exocyclic)	1.512	1.512	0.018	1.496	1.526	13	9
Csp ² -Csp ²	сп ₃ -с=с С#_сн _с-с	1.503	1.504	0.011	1.497	1.509	215	
	$(C_{\#})_{2} - C_{H} - C_{H} - C_{H}$	1.502	1.502	0.013	1.494	1.510	483 564	
	(C#),-C-C=C	1.522	1.522	0.014	1.511	1.533	193	

Bond	Substructure	d	т	σ	q_1	q_{u}	n	Note
Csp ³ -Csp ²	C*-C=C (overall)	1.507	1.507	0.015	1.499	1.517	1 456	5
	C*-C=C (endocyclic)							
	in cyclopropene	1.509	1.508	0.016	1.500	1.516	20	10
	in cyclobutene	1.513	1.512	0.018	1.500	1.525	50	8
	in cyclopentene	1.512	1.512	0.014	1.502	1.521	208	
	in cyclonextene	1.506	1.505	0.016	1.495	1.516	391	
	in cyclohexa-1.3-diene	1.502	1.505	0.017	1.491	1.517	56	
	$C^*-C=C$ (exocyclic):		1000				50	
	cyclopropenyl-C*	1.478	1.475	0.012	1.470	1.485	7	10
	cyclobutenyl-C*	1.489	1.483	0.015	1.479	1.496	11	8
	cyclopentenyl-C*	1.504	1.506	0.012	1.495	1.512	115	
	C* CH-O in aldehydes	1.511	1.511	0.013	1.502	1.519	292	
	$(\mathbf{C}^*)_{\mathbf{r}} - \mathbf{C} = \mathbf{O}$	1.510	1.510	0.008	1.501	1.516	1	
	in ketones	1.511	1.511	0.015	1.501	1.521	952	11
	in cyclobutanone	1.529	1.530	0.016	1.514	1.545	18	
	in cyclopentanone	1.514	1.514	0.016	1.505	1.523	312	
	acyclic and 6+ rings	1.509	1.509	0.016	1.499	1.519	626	
	C^* -COOH in carboxylic acids	1.502	1.502	0.014	1.495	1.510	176	
	$C^* = COO^*$ in carboxylate anions $C^* = C(=O)(=OC^*)$	1.520	1.521	0.011	1.510	1.528	57	
	in acyclic esters	1.497	1.496	0.018	1.484	1.509	553	12
	in β -lactones	1.519	1.519	0.020	1.500	1.538	4	13
	in γ-lactones	1.512	1.512	0.015	1.501	1.521	110	12
	in δ -lactones	1.504	1.502	0.013	1.495	1.517	27	12
	cyclopropyl (C)–C=O in ketones, acids	1.497	1 405	0.010	1 474	1 407	105	-
	and esters $C^* - C(-O)(-NH)$ in acyclic amides	1.480	1.485	0.018	1.4/4	1.497	105	14
	$C^*-C(=O)(-NHC^*)$ in acyclic amides	1.506	1.512	0.010	1 498	1.520	52 78	14
	$C^*-C(=O)[-N(C^*)_2]$ in acyclic amides	1.505	1.505	0.012	1.496	1.515	15	14
Csp ³ –Car	CH ₃ -Car	1.506	1.507	0.011	1.501	1.513	454	
	C#−CH ₂ −Car	1.510	1.510	0.009	1.505	1.516	674	
	$(C#)_2$ -CH-Car	1.515	1.515	0.011	1.508	1.522	363	
	$(C\#)_3$ -C-Car (success)	1.527	1.530	0.016	1.517	1.539	308	
	cyclopropyl (C)-Car	1.313	1.313	0.014	1.303	1.521	1813	7
$C_{sp}^3 - C_{sp}^1$	C*-C=C	1.466	1.465	0.010	1.460	1.469	21	15
esp esp	C#−C≡C	1.472	1.472	0.012	1.464	1.481	88	15
	C*-C≡N	1.470	1.469	0.013	1.463	1.479	106	7b
	cyclopropyl (C)–C≡N	1.444	1.447	0.010	1.436	1.451	38	7
Csp ² –Csp ²	C=C-C=C (conjugated)	1 455	1 455	0.011	1 447	1 463	30	16.18
	(unconjugated)	1.455	1.455	0.011	1.447	1.403	8	17.18
	(overall)	1.460	1.460	0.012	1.450	1.470	38	17,10
	C=C-C=C-C=C	1.443	1.445	0.013	1.431	1.454	29	18
	C=C-C=C (endocyclic in TCNQ)	1.432	1.433	0.012	1.424	1.441	280	19
	$C=C-C(=O)(-C^*)$	1 464	1.462	0.019	1 452	1 476	211	16 10
	(conjugated)	1.404	1.402	0.018	1.455	1.4/0	211	17.18
	(overall)	1.465	1.462	0.017	1.453	1.478	226	17,10
	$\mathbf{C} = \mathbf{C} - \mathbf{C} (=\mathbf{O}) - \mathbf{C} = \mathbf{C}$,		
	in benzoquinone (C,H-subst. only)	1.478	1.476	0.011	1.469	1.488	28	
	in benzoquinone (any subst.)	1.478	1.478	0.031	1.464	1.498	172	
	non-quinonoid	1.456	1.455	0.012	1.447	1.464	28	
	C = C - COOH	1.4/5	1.4/6	0.015	1.461	1.488	112	
	C = C = C = C = C = C = C = C = C = C =	1.466	1.409	0.014	1.478	1.497	113	
	HOOC-COOH	1.538	1.537	0.007	1.535	1.541	9	
	HOOC-COO	1.549	1.552	0.009	1.546	1.553	13	
	-OOC-COO-	1.564	1.559	0.022	1.554	1.568	9	
	formal Csp^2 - Csp^2 single bond in selected							
	non-lused heterocycles:	1 412	1 / 10	0.016	1 401	1 427	20	
	in furan $(C_3 - C_4)$	1.412	1.410	0.010	1.401	1.427	29 67	
	in thiophene (C3–C4)	1.424	1.425	0.015	1.415	1.433	40	
	in pyrazole (C3–C4)	1.410	1.412	0.016	1.400	1.418	20	
	in isoxazole (C3–C4)	1.425	1.425	0.016	1.413	1.438	9	
	in furazan (C3–C4)	1.428	1.427	0.007	1.422	1.435	6	
Can ² Can	in furoxan (C3–C4)	1.417	1.417	0.006	1.412	1.422	14	
Csp−Car	(conjugated)	1 470	1 470	0.015	1 162	1 /00	27	16 10
	(conjugated)	1.4/0	1.4/0	0.015	1.403	1.400	51	10,18

Bond	Substructure	d	m	σ	q_1	q_{u}	n	Note
Csp ² -Car		1.488	1.490	0.012	1.480	1.496	87	17,18
	(overall)	1.483	1.483	0.015	1.472	1.494	124	
	cyclopropenyl (C=C)–Car	1.447	1.448	0.006	1.441	1.452	8	10
	$Car-C(=O)-C^*$	1.488	1.489	0.016	1.478	1.500	84	
	Car = C(=0) - Car	1.480	1.481	0.017	1.468	1.494	58	
	$Car = C(-\Omega)(-\Omega C^*)$	1.484	1.485	0.014	1.4/4	1.491	/ S 219	
	$Car = COO^{-}$	1.487	1.407	0.012	1.400	1.494	218	
	$Car-C(=O)-NH_2$	1.500	1.503	0.020	1.498	1.510	19	
	Car-C=N-C#						• •	
	(conjugated)	1.476	1.478	0.014	1.466	1.486	27	16
	(unconjugated)	1.491	1.490	0.008	1.485	1.496	48	17
	(overall)	1.485	1.487	0.013	1.481	1.493	75	
$Can^2 Can^1$	in indole $(U_3 - U_3a)$	1.434	1.434	0.011	1.428	1.439	40	-
Csp -Csp	C - C - C = C C - C - C = N in TCNO	1.431	1.427	0.014	1.425	1.441	280	/D 10
Car-Car	in biphenyls (ortho subst. all H)	1.487	1.488	0.007	1.420	1 493	280	19
	$(\geq 1 \text{ non-H} \text{ ortho-subst.})$	1.490	1.491	0.007	1.486	1.495	212	
Car-Csp ¹	Car-C=C	1.434	1.436	0.006	1.430	1.437	37	
	Car–C≡N	1.443	1.444	0.008	1.436	1.448	31	
$Csp^1 - Csp^1$	C=C-C=C	1.377	1.378	0.012	1.374	1.384	21	
Csp ² =Csp ²	$C^*-CH=CH_2$	1.299	1.300	0.027	1.280	1.311	42	
	$(C^*)_2 - C = CH_2$	1.321	1.321	0.013	1.313	1.328	77	
	$C^* - C \Pi = C \Pi - C^*$	1 2 1 7	1 210	0.012	1 210	1 222	100	
	(trans)	1.317	1.310	0.013	1.310	1.323	100	
	(overall)	1.316	1.317	0.011	1.304	1 323	127	
	(C*),- C=C H-C*	1.326	1.328	0.011	1.319	1.323	168	
	$(C^*)_2 - C = C - (C^*)_2$	1.331	1.330	0.009	1.326	1.334	89	
	$(C^*,H)_2$ -C=C- $(C^*,H)_2$ (overall)	1.322	1.323	0.014	1.315	1.331	493	5
	in cyclopropene (any subst.)	1.294	1.288	0.017	1.284	1.302	10	10
	in cyclobutene (any subst.)	1.335	1.335	0.019	1.324	1.347	25	8
	in cyclopentene (C,H-subst.)	1.323	1.324	0.013	1.314	1.331	104	
	In cyclonexche $(C,H-subst.)$	1.320	1.325	0.012	1.318	1.334	196	
	C=C=C=C (C.H subst conjugated)	1 330	1.307	0.005	1.303	1 3 3 8	76	16
	C=C-C=C-C=C (C.H subst., conjugated)	1.345	1.345	0.014	1.322	1.350	58	16
	C=C-Car (C,H subst., conjugated)	1.339	1.340	0.011	1.334	1.346	124	16
	C=C in cyclopenta-1,3-diene (any subst.)	1.341	1.341	0.017	1.328	1.356	18	
	C=C in cyclohexa-1,3-diene (any subst.)	1.332	1.332	0.013	1.323	1.341	56	
	in C=C-C=O							
	(C,H subst., conjugated)	1.340	1.340	0.013	1.332	1.348	211	16,18
	(CH subst., overall)	1.331	1.330	0.008	1.320	1.339	14	17,18
	in cvclohexa-2.5-dien-1-ones	1.329	1.339	0.013	1.332	1.346	220	
	in <i>p</i> -benzoquinones	1.02)	1.527	0.011	1.521	1.555	20	
	(C*,H subst.)	1.333	1.337	0.011	1.325	1.338	14	
	(any subst.)	1.349	1.339	0.030	1.330	1.364	86	
	in TCNQ							
	(endocyclic)	1.352	1.353	0.010	1.345	1.358	142	19
	(exocyclic)	1.392	1.391	0.017	1.379	1.405	139	19
	in heterocycles (any subst)	1.502	1.300	0.020	1.349	1.370	54	
	1H-pyrrole (C2–C3, C4–C5)	1.375	1 377	0.018	1 361	1 388	58	
	furan (C2–C3, C4–C5)	1.341	1.342	0.021	1.329	1.351	125	
	thiophene (C2-C3, C4-C5)	1.362	1.359	0.025	1.346	1.377	60	
	pyrazole (C4–C5)	1.369	1.372	0.019	1.362	1.383	20	
	imidazole (C4–C5)	1.360	1.361	0.014	1.352	1.367	44	
	isoxazole (C4-C5)	1.341	1.336	0.012	1.331	1.355	9	
Car~Car	in phenyl rings with C*H subst only	1.304	1.303	0.012	1.355	1.3/1	40	
eur = eur	H–C≃C–H	1 380	1 381	0.013	1 372	1 388	2 101	
	$C^*-C\simeq C-H$	1.387	1.388	0.010	1.382	1.393	891	
	$\mathbf{C}^* - \mathbf{C} \simeq \mathbf{C} - \mathbf{C}^*$	1.397	1.397	0.009	1.392	1.403	182	
	$\mathbf{C} \simeq \mathbf{C}$ (overall)	1.384	1.384	0.013	1.375	1.391	3 264	
	$F-C\simeq C-F$	1.372	1.374	0.011	1.366	1.380	84	4
	$CI-C \simeq C-CI$	1.388	1.389	0.014	1.380	1.398	152	4
	D_{2h} , any subst.)	1 264	1 264	0.014	1.257	1 272	440	
	C2-C3	1.304 1.406	1.304	0.014	1.330	1.5/5	440 210	
	C1–C8a	1.420	1.419	0.014	1.397	1.415	218 440	
	C4a–C8a	1.422	1.424	0.011	1.417	1.429	109	

TL		(A
190	Ie I	continueat
1.0410		(connew)

Bond	Substructure	d	т	σ	q_1	q_{u}	n	Note
$Car \simeq Car$	in anthracene (D_{2k} any subst.)							
	C1–C2	1.356	1.356	0.009	1.350	1.360	56	
	C2–C3	1.410	1.410	0.010	1.401	1.416	34	
	C1–C9a	1.430	1.430	0.006	1.426	1.434	56	
	C4a-C9a	1.435	1.436	0.007	1.429	1.440	34	
	C9-C9a in puriding (CII subst.)	1.400	1.402	0.009	1.395	1.406	68 276	20
	in pyridine (C,H subst.)	1.379	1.381	0.012	1.371	1.387	270	20
	in pyridinium cation	1.500	1.500	0.015	1.571	1.507	551	20
	$(N^+-H; C, H \text{ subst. on } C)$							
	C2-C3	1.373	1.375	0.012	1.368	1.380	30	
	C3–C4	1.379	1.380	0.011	1.371	1.388	30	
	$(N^+-X; C, H \text{ subst. on } C)$							
	C2-C3	1.373	1.372	0.019	1.362	1.382	151	
	C_3-C_4	1.383	1.385	0.019	1.372	1.394	151	
	(any subst. on C)	1.379	1.377	0.010	1.370	1.388	10 60	
	in pyrimidine (CH subst. on C)	1.387	1.389	0.024	1.379	1.400	28	
$Csp^1 \equiv Csp^1$	X-C=C-X	1.183	1.183	0.014	1.174	1.193	119	15
	С,H -С=С -С,Н	1.181	1.181	0.014	1.173	1.192	104	15
	in $C=C-C(sp^2,ar)$	1.189	1.193	0.010	1.181	1.195	38	15
	in C=C-C=C	1.192	1.192	0.010	1.187	1.197	42	15
	In CH=C-C#	1.174	1.174	0.011	1.167	1.180	42	15
Csp ³ -Cl	Omitting 1,2-dichlorides:	1 700	1 700	0.007	1 702	1 705	12	4
	$C = CH_2 = CI$	1.790	1.790	0.007	1.785	1.795	8	4
		1.849	1.856	0.005	1.837	1.858	5	4
	$X - CH_2 - CI (X = C, H, N, O)$	1.790	1.791	0.011	1.783	1.797	37	4
	X_2 -CH-Cl (X = C,H,N,O)	1.805	1.803	0.014	1.800	1.812	26	4
	X_3 -C-Cl (X = C,H,N,O)	1.843	1.838	0.014	1.835	1.858	7	4
	$X_2 - C - CI_2 (X = C, H, N, O)$	1.779	1.776	0.015	1.769	1.790	18	4
	$X-C-CI_3$ (X = C,H,N,O)	1.768	1.765	0.011	1.761	1.776	33	4
	CI-CH(-C)-CH(-C)-CI	1.793	1.793	0.013	1.780	1.800	00 54	4
	$C = C(-C_2) = C(-C_2) = C $	1.702	1.760	0.010	1.737	1.763	64	4
Csp ² -Cl	C=C-CI (C.H.N.O subst. on C)	1.734	1.729	0.011	1.719	1.748	63	4
0.00	$C=C-Cl_2$ (C,H,N,O subst. on C)	1.720	1.716	0.013	1.708	1.729	20	4
	CI-C=C-CI	1.713	1.711	0.011	1.705	1.720	80	4
Car–Cl	$Car-Cl (mono-Cl + m, p-Cl_2)$	1.739	1.741	0.010	1.734	1.745	340	4
	$Car-Cl (o-Cl_2)$	1.720	1.720	0.010	1.713	1.717	364	4
$Csp^3 - Cl$	See HULENEIU (1.034, 1.040) Omitting 1.2 diffuoridae							
Csp -r	C-CH ₂ -F and C ₂ -CH-F	1 399	1 300	0.017	1 389	1 408	25	4
	C,-C-F	1.428	1.431	0.009	1.421	1.435	11	4
	$(C^*,H)_2$ -C-F ₂	1.349	1.347	0.012	1.342	1.356	58	4
	C^*-C-F_3	1.336	1.334	0.007	1.330	1.344	12	4
	F-C*-C*-F	1.371	1.374	0.007	1.362	1.375	26	4
	X_3 -C-F (X = C,H,N,O)	1.386	1.389	0.033	1.373	1.408	70	4
	$X_2 - C - F_2 (X = C, H, N, O)$	1.351	1.349	0.013	1.342	1.356	200	4
	$F_{-C}(-X) = C(-X) = F(X) = C H N O$	1.322	1.323	0.013	1.314	1.352	309	4
	$F = C(-X)_2 = C(-X)_2 = F(X = C, H, N, O)$ $F = C(-X)_2 = NO_2 (X = any subst.)$	1.320	1.319	0.009	1.302	1.327	18	-
Csp ² -F	C=C-F (C,H,N,O subst. on C)	1.340	1.340	0.013	1.334	1.346	34	4
Car-F	Car-F (mono-F + m,p-F ₂)	1.363	1.362	0.008	1.357	1.368	38	4
_	$Car-\mathbf{F}(o-\mathbf{F}_2)$	1.340	1.340	0.009	1.336	1.344	167	4
Csp ³ –H	$C-C-H_3$ (methyl)	1.059	1.061	0.030	1.039	1.083	83	21
	$C_2 - C - H_2$ (primary)	1.092	1.095	0.013	1.088	1.099	100	21
	C_3 -C-H (secondary)	1.099	1.09/	0.004	1.095	1.103	14	21
	$X_{2,3}$ -C-H (primary and secondary) X-C-H ₂ (methyl)	1.095	1.075	0.012	1.089	1.100	160	21
	$X_2 - C - H_2$ (primary)	1.092	1.095	0.012	1.088	1.009	230	21
	$X_3 - C - H$ (secondary)	1.099	1.099	0.007	1.095	1.103	117	21
_	$X_{2.3}$ -C-H (primary and secondary)	1.094	1.096	0.011	1.091	1.100	348	21
Csp ² –H	C-C=C-H	1.077	1.079	0.012	1.074	1.085	14	21
Car-H	Car-H	1.083	1.083	0.011	1.080	1.087	218	21
Csp ⁻ -1 Car-I	C^{-1}	2.102	2.139	0.015	2.149	2.179	15	4
$C_{sn^3-N(4)}$	$C^{*}-NH_{2}^{+}$	1.488	1.488	0.013	1.487	1.495	298	4
~op 11(7)	$(C^*)_2 - NH_2^+$	1.494	1.493	0.016	1.484	1.503	249	
	$(C^*)_3 - NH^+$	1.502	1.502	0.015	1.491	1.512	509	
	$(C^{*})_{4} - N^{+}$	1.510	1.509	0.020	1.496	1.523	319	
	$C^{*}-N^{+}$ (overall)	1.499	1.498	0.018	1.488	1.510	1 370	

Bond	Substructure	d	m	σ	q_1	q_{u}	n	Note
$Csp^3-N(3)$	C^*-N^+ in N-subst. pyridinium	1.485	1.484	0.009	1.477	1.490	32	
• • • •	C^*-NH_2 (Nsp ³ : pyramidal)	1.469	1.470	0.010	1.462	1.474	19	22
	$(C^*)_2 - NH (Nsp^3: pyramidal)$	1.469	1.467	0.012	1.461	1.477	152	5,22
	$(C^*)_3$ -N (Nsp ³ : pyramidal)	1.469	1.468	0.014	1.460	1.476	1 042	5,22
	C^*-Nsp^3 (overall)	1.469	1.468	0.014	1.460	1.476	1 201	
	Csp^3-Nsp^3	=-						
	in aziridine	1.472	1.471	0.016	1.464	1.482	134	
	in azetidine	1.484	1.481	0.018	1.472	1.495	21	
	in tetranyaropyrrole	1.475	1.4/3	0.016	1.464	1.483	66	
	$Csn^3 - Nsn^2$ (N planar) in:	1.475	1.4/3	0.013	1.400	1.4/9	240	22
	acyclic amides C*-NH-C=O	1 454	1 451	0.011	1 446	1 461	79	23
	β -lactams C*-N(-X)-C=O (endo)	1 464	1.451	0.012	1 458	1 475	23	14
	γ -lactams	1	1.105	0.012	1.150	1.475	25	15
	$C^{*}-NH-C=O$ (endo)	1.457	1.458	0.011	1.449	1.465	20	13
	$C^{*}-N(-C^{*})-C=O$ (endo)	1.462	1.461	0.010	1.453	1.466	15	13
	$C^{*}-N(-C^{*})-C=O(exo)$	1.458	1.456	0.014	1.448	1.465	15	13
	δ-lactams							
	$C^*-NH-C=O$ (endo)	1.478	1.472	0.016	1.467	1.491	6	14
	$C^{+}-N(-C^{+})-C=O$ (endo)	1.479	1.476	0.007	1.475	1.482	15	14
	$C^{+}-N(-C^{+})-C=O(exo)$	1.408	1.4/1	0.009	1.462	1.4//	15	14
	$C-CH_{-}-NO_{-}$	1 485	1 483	0.020	1 478	1 502	Q	
	C_{2} -CH-NO ₂	1.405	1.405	0.020	1.478	1.502	12	
	$C_2 - C - NO_2$	1.533	1.507	0.013	1.502	1 539	12	
	$C_{2}-C-(NO_{2})_{2}$	1.537	1.536	0.016	1.525	1.550	19	
	1,2-dinitro: NO ₂ -C*-C*-NO ₂	1.552	1.550	0.023	1.536	1.572	32	
$Csp^3-N(2)$	C#-N=N	1.493	1.493	0.020	1.477	1.506	54	
	C*–N=C–Car	1.465	1.468	0.011	1.461	1.472	75	
$Csp^2-N(3)$	$C=C-NH_2 Nsp^2$ planar	1.336	1.344	0.017	1.317	1.348	10	23
	C=C-NH-C# Nsp ² planar	1.339	1.340	0.016	1.327	1.351	17	23
	$C=C-N-(C\#)_2$	1 255	1.250					
	Nsp ² planar Nsp ³ puromidol	1.355	1.358	0.014	1.341	1.363	22	23
	$Csn^2 - Nsn^2$ (N planar) in:	1.410	1.410	0.018	1.397	1.432	18	22
	acyclic amides							25
	NH ₂ -C=O	1.325	1.323	0.009	1.318	1.331	32	14
	C*-NH-C=O	1.334	1.333	0.011	1.326	1.343	78	14
	$(C^*)_2$ -N-C=O	1.346	1.342	0.011	1.339	1.356	5	14
	β-lactams C*–NH–C=O	1,385	1.388	0.019	1.374	1.396	23	13
	γ-lactams							
	$C^*-NH-C=O$	1.331	1.331	0.011	1.326	1.337	20	13
	$U^{+}-N(-U^{+})-U=0$	1.347	1.344	0.014	1.335	1.359	15	13
	C*-NH-C-O	1 334	1 3 3 4	0.006	1 330	1 3 3 0	6	14
	$C^{*}-N(-C^{*})-C=0$	1 352	1 353	0.000	1 344	1.359	15	14
	peptides $C\#-N(-X)-C(-C\#)(=O)$	1.333	1.334	0.013	1.326	1.340	380	24
	ureas							
	$(\mathbf{NH}_2)_2$ –C=O	1.334	1.334	0.008	1.329	1.339	48	25,26
	(C#− NH) ₂ − C = O	1.347	1.345	0.010	1.341	1.354	26	25
	[(C#) _n -N] ₂ -C=O	1.363	1.359	0.014	1.354	1.370	40	25,27
	thioureas	1.346	1.343	0.023	1.328	1.361	192	
	$(X_2N)_2$ -C=S							
		1 276	1 277	0.012	1 260	1 202	()	
	$[C_{\#}-C(=O)]_2-N_{H}$	1.370	1.377	0.012	1.309	1.383	29	
	$[C_{\pi}^{n} 2(-C)]_{2} + C_{\pi}^{n}$	1 396	1 396	0.017	1 389	1 403	46	
	$[C_{sp}^{2}-C(=O)]_{2}-N-C_{sp}^{2}$	1.409	1.406	0.020	1.391	1.419	28	
	guanidinium $[C - (NH_2)_3]^+$ (unsubst.)	1.321	1.320	0.008	1.314	1.327	39	
	(any subst.)	1.328	1.325	0.015	1.317	1.333	140	
	in heterocyclic systems (any subst.)	-						
	1H-pyrrole (N1–C2, N1–C5)	1.372	1.374	0.016	1.363	1.384	58	
	indole (N1–C2)	1.370	1.370	0.012	1.364	1.377	40	
	pyrazole (N1–C5)	1.357	1.359	0.012	1.347	1.365	20	
	imidazole $(N1-C2)$	1.349	1.549	0.018	1.338	1.358	44	
$C_{sp}^2 N(2)$	initiazole $(N1-C3)$	1.3/0	1.3/0	0.010	1.303	1.5/7	44	
$C_{ar}=N(2)$	$Car = N^{+} = (C H).$	1.370	1.377	0.011	1.309	1.384	44 22	
Car-N(3)	Car-NH ₂	1.705	1.400	0.007	1.401	1.4/0	23	
	(Nsp ² : planar)	1.355	1.360	0.020	1.340	1.372	33	23
	(Nsp ³ : pyramidal)	1.394	1.396	0.011	1.385	1.403	25	22
	(overall)	1.375	1.377	0.025	1.363	1.394	98	28

Table (continued)

Bond	Substructure	d	т	σ	q_1	q_{u}	n	Note
Car-N(3)	Car–NH–C#							
	(Nsp ² : planar)	1.353	1.353	0.007	1.347	1.359	16	23
	(Nsp ³ : pyramidal)	1.419	1.423	0.017	1.412	1.432	8	22
	(overall) $Car = N_{-}(C^{\#})$	1.380	1.364	0.032	1.353	1.412	31	28
	$(Nsp^2; planar)$	1.371	1.370	0.016	1.363	1.382	41	23
	(Nsp ³ : pyramidal)	1.426	1.425	0.010	1.421	1.431	22	23
	(overall)	1.390	1.385	0.030	1.366	1.420	69	28
	in indole (N1–C7a)	1.372	1.372	0.007	1.367	1.376	40	
C_{au} N(2)	$Car-NO_2$	1.468	1.469	0.014	1.460	1.476	556	
$C_{sp}^{2} = N(3)$	in furoxan $(^+N^2=C^3)$	1.431	1.435	0.020	1.422	1.442	26	
$Csp^2 = N(2)$	Car-C=N-C#	1.279	1.279	0.009	1.311	1.324	75	
	$(C,H)_2$ -C=N-OH in oximes	1.281	1.280	0.013	1.273	1.288	67	
	S-C=N-X	1.302	1.302	0.021	1.285	1.319	36	
	in pyrazole (N2=C3)	1.329	1.331	0.014	1.315	1.339	20	
	in imidazole $(C2=N3)$	1.313	1.314	0.011	1.307	1.319	44	
	in furazan (N2=C3, C4=N5)	1.314	1.313	0.009	1.303	1.320	12	
	in furoxan (C4=N5)	1.304	1.306	0.008	1.300	1.303	12	
$Car \simeq N(3)$	$C \simeq N^+ - H$ (pyrimidinium)	1.335	1.334	0.015	1.325	1.342	30	
	$\mathbf{C} \simeq \mathbf{N}^+ - \mathbf{C}^*$ (pyrimidinium)	1.346	1.346	0.010	1.340	1.352	64	
$C_{ar} \sim N(2)$	$C \simeq N (-O^{-1})$ (pyrimidinium)	1.362	1.359	0.013	1.353	1.369	56	
$Cur \cong In(2)$	$C \simeq N$ (pyrame)	1.337	1.338	0.012	1.330	1.344	269	
	$C \simeq N \simeq C$ (pyrimidine)	1.339	1.338	0.022	1 333	1.347	28	
	$N \simeq C \simeq N$ (pyrimidine)	1.333	1.335	0.013	1.326	1.337	28	
	$\mathbf{C} \simeq \mathbf{N}$ (pyrimidine) (overall)	1.336	1.337	0.014	1.331	1.339	56	
	in any 6-membered N-containing aromatic							
	$H_{-}C \sim N \sim C_{-}H$	1 3 3 4	1 2 2 4	0.014	1 227	1 241	146	
	$H - C \simeq N \simeq C - C^*$	1.334	1.334	0.014	1.327	1.341	140	
	$\mathbf{C}^* - \mathbf{C} \simeq \mathbf{N} \simeq \mathbf{C} - \mathbf{C}^*$	1.345	1.345	0.008	1.342	1.348	24	
	$\mathbf{C} \simeq \mathbf{N} \simeq \mathbf{C}$ (overall)	1.336	1.337	0.014	1.329	1.344	204	
$Csp^1 \equiv N(2)$	X-S-C≡C ⁻ (isocyanide)	1.144	1.147	0.006	1.140	1.148	6	
$Csp^* \equiv N(1)$	C = C = N in TCNO	1.136	1.137	0.010	1.131	1.142	140	10
	Car-C=N	1.144	1.144	0.008	1.139	1.149	284	19
	X-N ⁺ =N	1.144	1.141	0.012	1.133	1.145	10	
	(S-C≡N) [−]	1.155	1.156	0.012	1.147	1.165	14	
$Csp^3-O(2)$	in alcohols	1 41 2		0.010	1 20 5	1 495	17	
	CH_3-OH	1.413	1.414	0.018	1.395	1.425	1/	
	$C_{-}CH_{2}-OH$	1.420	1.420	0.011	1.425	1 439	266	
	C ₃ -C-OH	1.440	1.440	0.012	1.432	1.449	106	
	C [*] -OH (overall)	1.432	1.431	0.013	1.424	1.441	464	
	in dialkyl ethers		4.440	0.047	1 10 5	1.494	110	29
	CH_3-O-C^*	1.410	1.418	0.010	1.405	1.420	110	
	$C_{-}CH_{-}O_{-}C^{*}$	1.420	1.424	0.011	1.418	1.435	53	
	C ₃ -C-O-C*	1.452	1.450	0.011	1.445	1.458	39	
	$\vec{C*-O-C*}$ (overall)	1.426	1.425	0.019	1.414	1.437	236	5
	in aryl alkyl ethers			0.010			(1)(29
	CH_3 -O-Car	1.424	1.424	0.012	1.417	1.431	616 188	
	$C - CH_2 - O - Car$	1.431	1.430	0.013	1.422	1.436	58	
	$C_2 - C - O - Car$	1.470	1.469	0.018	1.456	1.483	55	
	$C^*-O-Car$ (overall)	1.429	1.427	0.018	1.419	1.436	917	
	in alkyl esters of carboxylic acids			0.040			••••	12,29
	$CH_3 - O - C(=O) - C^*$	1.448	1.449	0.010	1.442	1.455	200	
	$C = CH_2 = O = C(=O) = C^*$	1.452	1.455	0.009	1.445	1.458	52 78	
	$C_2 - C - O - C = O - C^*$	1.400	1.475	0.008	1.472	1.484	6	
	$\vec{C*}-\vec{O}-\vec{C}(=\vec{O})-\vec{C*}$ (overall)	1.450	1.451	0.014	1.442	1.459	314	
	in alkyl esters of α,β -unsaturated acids:							
	$C^*-O-C(=O)-C=C$ (overall)	1.453	1.452	0.013	1.444	1.459	112	
	III AIKYI ESTERS OF DERIZOIC ACID	1 454	1 454	0.012	1 446	1 463	219	
	in ring systems	1.404	1.454	0.012	10	1.405	217	
	oxirane (epoxides) (any subst.)	1.446	1.446	0.014	1.438	1.456	498	9
	oxetane (any subst.)	1.463	1.460	0.015	1.451	1.474	16	
	tetrahydrofuran (C,H subst.)	1.442	1.441	0.017	1.430	1.451	154	

Bond	Substructure	d	m	σ	q_1	q_u	n	Note
$Csp^3-O(2)$	tetrahydropyran (C.H subst.)	1.441	1.442	0.015	1 4 3 1	1 4 5 1	22	
	β -lactones: C*-O-C(=O)	1.492	1.494	0.010	1.481	1.501	4	16
	γ -lactones: C*-O-C(=O)	1.464	1.464	0.012	1.455	1.473	110	12
	δ -lactones: C*-O-C(=O)	1.461	1.464	0.017	1.452	1.473	27	12
	O-C-O system in gem-diols, and pyranose and							20.24
	iuranose sugars:	1 207	1 401	0.012	1 200	1 405	10	30,31
	$\mathbf{D} - \mathbf{C} = \mathbf{O} \mathbf{H}$	1.397	1.401	0.012	1.300	1.405	10	
	O_{1} axial (a):							
	$C_{s} - O_{s}$	1.439	1.440	0.008	1.432	1.445	29	
	$O_5 - C_1$	1.427	1.426	0.012	1.421	1.432	29	
	$C_1 - O_1$	1.403	1.400	0.012	1.391	1.412	29	
	O_1 equatorial (β):							
	C_5-O_5	1.435	1.436	0.008	1.429	1.440	17	
	$O_5 - C_1$	1.430	1.431	0.010	1.424	1.430	17	
	$C_1 = O_1$ $\alpha + \beta$ (overall):	1.393	1.393	0.007	1.360	1.399	17	
	$\alpha + \beta$ (overall). C _c -O _c	1.439	1.440	0.008	1.432	1.446	60	
	$O_5 - C_1$	1.430	1.429	0.012	1.421	1.436	60	
	$C_1 - O_1$	1.401	1.399	0.011	1.392	1.407	60	
	$C_4 - O_4 - C_1 - O_1 H$ in furanoses							
	(overall values)							
	$C_4 - O_4$	1.442	1.446	0.012	1.436	1.449	18	
	O_4-C_1	1.432	1.432	0.012	1.421	1.443	18	
	$C_1 = O_1$ $C_2 = O_2 = C_2 = O_2 = C^*$ in pyranoses	1.404	1.405	0.015	1.397	1.409	10	
	O_{1} axial (a):							
	$C_5 - O_5$	1.439	1.438	0.010	1.433	1.446	67	
	$O_5 - C_1$	1.417	1.417	0.009	1.410	1.424	67	
	$C_1 - O_1$	1.409	1.409	0.014	1.401	1.417	67	
	0 ₁ -C*	1.435	1.435	0.013	1.427	1.443	67	
	O_1 equatorial (β):	1 42 4	1 425	0.007	1 400	1 420	20	
	$C_5 - O_5$	1.434	1.435	0.006	1.429	1.439	39	
	$C_{5}-C_{1}$	1.424	1.424	0.008	1.410	1.451	39	
	$O_1 - O_1$	1.437	1.438	0.011	1.428	1.400	39	
	$\alpha + \beta$ (overall):	1.107		0.015	1		57	
	$C_{5}-O_{5}$	1.436	1.436	0.009	1.431	1.442	126	
	$O_5 - C_1$	1.419	1.419	0.011	1.412	1.426	126	
	$C_1 - O_1$	1.402	1.403	0.016	1.391	1.413	126	
	$O_1 - C^*$	1.436	1.436	0.013	1.428	1.445	126	
	$C_4 - O_4 - C_1 - O_1 - C^*$ in turanoses							
	(overall values)	1 44 3	1 445	0.013	1 4 2 9	1 4 5 3	23	
	$O_4 = O_4$	1.421	1.418	0.013	1.413	1.431	23	
	$C_1 - O_1$	1.410	1.409	0.014	1.401	1.420	23	
	O ₁ -C*	1.439	1.437	0.014	1.429	1.449	23	
	Miscellaneous:							
	C#-O-SiX ₃	1.416	1.416	0.017	1.405	1.428	29	
$C_{2} = \frac{2}{3} O(2)$	$C^{*}-O-SO_{2}-C$	1.465	1.461	0.014	1.454	1.475	33	
Csp = O(2)	in endlesters: $C = C = O = C^*$	1.353	1.331	0.017	1.324	1.342	33 40	
	in acids:	1.554	1.555	0.010	1.541	1.505	40	
	С*-С(=О)-ОН	1.308	1.311	0.019	1.298	1.320	174	
	C=C-C(=O)-OH	1.293	1.295	0.019	1.279	1.307	22	
	Car-C(=O)–OH	1.305	1.311	0.020	1.291	1.317	75	
	in esters:	1.224	4 2 2 5		4 9 9 9			10.00
	$C^{-}C^{-}C^{-}C^{+}C^{+}C^{+}C^{+}C^{+}C^{+}C^{+}C^{+$	1.330	1.33/	0.014	1.328	1.346	221	12,29
	$C_{a} = C_{a} = C_{a} = C_{a}$	1.332	1.331	0.011	1.324	1.339	210	12
	$C^*-C(=O)-O-C=C$	1.362	1.359	0.013	1.329	1.374	219	12
	C*-C(=O)-O-C=C	1.407	1.405	0.017	1.394	1.420	26	
	C*-C(=O)-O-Car	1.360	1.359	0.011	1.355	1.367	40	12
	in anhydrides: O=C-O-C=O	1.386	1.386	0.011	1.379	1.393	70	
	in ring systems:			0.04-				
	$\frac{1}{10000000000000000000000000000000000$	1.368	1.369	0.015	1.359	1.377	125	
	B-lactones: $C*=C(-C)=C=C*$	1.354	1.354	0.010	1.343	1.300	9 1	12
	γ -lactones: C*-C(=O)-O-C*	1.359	1 349	0.013	1.340	1.371	110	13
	δ-lactones: C*-C(=O)-O-C*	1.339	1.339	0.012	1.332	1.347	27	12
Car-O(2)	in phenols: Car-OH	1.362	1.364	0.015	1.353	1.373	551	
	in aryl alkyl ethers: Car-O-C*	1.370	1.370	0.011	1.363	1.377	920	29,32

Bond	Substructure	d	т	σ	q_1	q_{u}	n	Note
Car-O(2)	in diaryl ethers: Car-O-Car	1.384	1.381	0.014	1.375	1.391	132	
	in esters: $Car-O-C(=O)-C^*$	1.401	1.401	0.010	1.394	1.408	40	12
$Csp^2 = O(1)$	in aldehydes and ketones:							
	C*-CH=O	1.192	1.192	0.005	1.188	1.197	7	
	$(C^*)_2 - C = O$	1.210	1.210	0.008	1.206	1.215	474	5
	$(C\#)_2$ -C=O	1 100	1 100	0.007	1 10 4	1 20 4	10	
	in cyclobutanones	1.198	1.198	0.007	1.194	1.204	12	
	in cycloberanones	1.208	1.208	0.007	1.203	1.212	312	
	C=C-C=O	1.222	1.222	0.010	1.216	1.229	225	
	$(C=C)_{2}-C=O$	1.233	1.229	0.010	1.226	1.242	28	
	Car-C=O	1.221	1.218	0.014	1.212	1.229	85	
	$(Car)_2$ -C=O	1.230	1.226	0.015	1.220	1.238	66	
	C=O in benzoquinones	1.222	1.220	0.013	1.211	1.231	86	
	delocalized double bonds in carboxylate anions: $H_{-}C \sim \Omega^{-1}$ (formate)	1 242	1 243	0.012	1 224	1 252	24	
	$C^*-C^{-}O^{-}$	1.242	1.243	0.012	1.234	1.252	114	
	$C=C-C\simeq O_{2}^{-}$	1.250	1.248	0.017	1.238	1.261	52	
	$Car-C \simeq O_2^{-1}$	1.255	1.253	0.010	1.249	1.262	22	
	HOOC- $\mathbf{C} \simeq \mathbf{O}_2^-$ (hydrogen oxalate)	1.243	1.247	0.015	1.232	1.256	26	
	$\mathbf{O}_2 \simeq \mathbf{C} - \mathbf{C} \simeq \mathbf{O}_2 - (\text{oxalate})$	1.251	1.251	0.007	1.248	1.254	18	
	in carboxylic acids (X-COOH) C^*	1 214	1 21 4	0.010	1 202	1 224	175	
	C = C = C = O = OH	1.214	1.214	0.019	1.203	1.224	1/5	
	Car-C(=0)-OH	1.226	1.223	0.020	1.210	1.241	75	
	in esters:			0.020			10	
	$C^{*}-C(=O)-O-C^{*}$	1.196	1.196	0.010	1.190	1.202	551	12
	$C=C-C(=O)-O-C^*$	1.199	1.198	0.009	1.193	1.203	113	
	$Car-C(=O)-O-C^*$	1.202	1.201	0.009	1.196	1.207	218	12
	$C^{*}-C(=0)-O-C=C$	1.190	1.190	0.014	1.184	1.198	26	12
	$C^{-}-C(=0)-O-Car$	1.187	1.100	0.011	1.181	1.195	40	12
	in β -lactones: C*-C(=O)-O-C*	1.193	1.193	0.006	1.187	1.195	4	13
	γ -lactones: C*-C(=O)-O-C*	1.201	1.202	0.009	1.196	1.206	109	12
	δ-lactones: $C^*-C(=O)-O-C^*$	1.205	1.207	0.008	1.201	1.209	27	12
	in amides:							
	$\mathbf{NH}_2 - \mathbf{C}(-\mathbf{C}^*) = \mathbf{O}$	1.234	1.233	0.012	1.225	1.243	32	14
	$(C^{+}-)(C^{+},H-)N-C(-C^{+})=0$	1.231	1.231	0.012	1.224	1.238	378	14
	p-lactams: C*-NH-C=O	1.198	1.200	0.012	1.195	1.204	23	13
	C*-NH-C=O	1.235	1.235	0.008	1.232	1.240	20	13
	C*-N(-C*)-C=O	1.225	1.226	0.011	1.217	1.233	15	13
	δ-lactams:							
	C*-NH-C=O	1.240	1.241	0.003	1.237	1.243	6	14
	. C*-N(-C*)-C=O	1.233	1.233	0.007	1.229	1.239	15	14
	in ureas: $(NH) \rightarrow C - O$	1 256	1 256	0.007	1 240	1 261	24	25.26
	$(NH)_2)_2 - C = O$ (C#-NH) - C - O	1.230	1.230	0.007	1.249	1.201	13	25,20
	$[(C\#)_{-}-N]_{2}-C=0$	1.230	1.230	0.007	1.224	1.234	20	25.27
$Csp^3-P(4)$	$C_3 - P^+ - C^*$	1.800	1.802	0.015	1.790	1.812	35	33
•	$C_2 - P(=O) - CH_3$	1.791	1.790	0.006	1.786	1.795	10	
	$C_2 - P(=O) - CH_2 - C$	1.806	1.806	0.009	1.801	1.813	45	
	$C_2 - P(=O) - CH - C_2$	1.821	1.821	0.009	1.815	1.828	15	
	$C_2 - P(=0) - C - C_3$ $C_2 - P(=0) - C + (avarall)$	1.841	1.842	0.008	1.835	1.847	14	
$Csn^3 - P(3)$	$C_2 - P - C^*$	1.815	1.811	0.017	1.800	1.822	23	
$Car-\mathbf{P}(4)$	$C_3 - P^+ - Car$	1.793	1.792	0.011	1.786	1.800	276	
	$C_2 - P(=O) - Car$	1.801	1.802	0.011	1.796	1.807	98	
	$Ph_3-P=N^+=P-Ph_3$	1.795	1.795	0.008	1.789	1.800	197	
Car-P(3)	C_2 -P-Car	1.836	1.837	0.010	1.830	1.844	102	
Can ³ C(A)	$(N \simeq)_2 P$ -Car ($P \simeq N$ aromatic) C* SO C (C* - CH avaluded)	1.795	1.793	0.011	1./88	1.803	43	
$Csp^{2}-S(4)$	$C^* - SO_2 - C$ ($C^* = CH_3$ excluded) $C^* - SO_2 - C$ (overall)	1.780	1.782	0.018	1.774	1.790	94	
	C^*-SO_2-O-X	1.745	1.744	0.009	1.738	1.754	7	34
	$C^*-SO_2-N-X_2$	1.758	1.756	0.018	1.746	1.773	17	34
Csp ³ –S(3)	$C^*-S(=O)-C(C^* = CH_3 \text{ excluded})$	1.818	1.814	0.024	1.802	1.829	69	
	$C^*-S(=O)-C$ (overall)	1.809	1.806	0.025	1.793	1.820	88	
	$CH_3 - S^{+} - X_2$	1.786	1.787	0.007	1.779	1.792	21	
	$\mathbf{C}^* - \mathbf{S}^* - \mathbf{A}_2 (\mathbf{C}^* = \mathbf{C}\mathbf{H}_3 \text{ excluded})$ $\mathbf{C}^* - \mathbf{S}^* - \mathbf{X}_2 (\text{overall})$	1.823	1.820	0.016	1.812	1.834	18 41	
$C_{sp}^3 - S(2)$	C^*-SH	1.808	1.805	0.020	1.800	1.819	6	
	CH ₃ -S-C*	1.789	1.787	0.008	1.784	1.794	9	

$ \begin{array}{c} Cgr^{3}(Q) \\ Cgr^{3}(Q)$	Bond	Substructure	d	m	σ	q_1	q_{u}	n	Note
$\begin{array}{c} C_{q}-C1-S-C^{*} (coveral) \\ C_{q}-S-C^{*} (coveral) \\ in thirane \\ in ternaly of the coverage of the c$	$Csp^3-S(2)$	C-CH ₂ -S-C*	1.817	1.816	0.013	1.808	1.824	92	
$ \begin{array}{c} C_{q}^{-C-S-C^{*}} (-C-S-C^{*}) \\ C_{q}^{-C-S-C^{*}} (-C-S-C^{*}) \\ (a therate set ZCMXSP (1.817, 1.84) \\ (b therate set ZCMXSP (1.817, 1.84) \\ (c -C-S-C^{*}) \\ (c -C-S-S-X) \\ (c -C-S-C^{*}) \\ (c -S-S-C^{*}) \\ (c -S-S-X) $	1 ()	$C_2 - C\tilde{H} - S - C^*$	1.819	1.819	0.011	1.811	1.825	32	
$ \begin{array}{c} C^{+}S-C^{+}(\operatorname{overali}) & .819 \\ in the line set ZOMXSP (1.87, 1.844) \\ in the line set ZOMXSP (1.844) \\ in the line set ZOMXSP (1.$		$C_3 - C - S - C^*$	1.856	1.860	0.011	1.854	1.863	26	
in thirane & ZOMSP (1.817, 1.844) I.83 0.025 1.810 1.858 4 9 in ternalydrothophene I.827 1.826 0.018 1.811 1.837 2.24 0.014 1.812 1.837 2.24 0.014 1.812 1.837 2.24 0.014 1.812 1.832 2.4 0.014 1.812 1.832 2.4 0.014 1.812 1.832 2.4 0.014 1.812 1.832 2.4 0.014 1.812 1.832 2.4 0.014 1.812 1.832 2.4 0.014 1.812 1.832 2.4 0.014 1.812 1.832 1.4 0.014 1.812 1.832 1.4 0.014 1.812 1.832 1.4 0.014 1.812 1.834 1.537 1.550 0.017 1.740 0.14 1.812 1.537 1.55 0.017 1.740 1.744 0.1 0.733 1.725 0.8 0.015 1.548 1.548 59 0.015 1.548 1.548 59 0.016 1.548 1.548 59 0.017 1.740 1.743 1.755 0.8 0.017 1.740 0.013 1.703 1.725 0.8 0.017 0.018 1.713 1.725 0.8 0.017 0.018 1.713 1.725 0.8 0.017 0.018 1.713 1.733 1.750 0.8 0.018 1.749 1.755 1.75 0.001 1.713 1.732 0.0 0.008 1.749 1.755 1.77 0.0 0.013 1.749 1.755 1.016 0.35 0.017 0.018 1.711 1.787 1.0 0.018 1.749 1.755 1.001 1.711 1.787 1.0 0.018 1.769 1.755 1.779 0.010 1.711 1.787 1.0 0.018 1.760 1.763 1.779 0.010 1.711 1.787 1.0 0.028 0.754 0.011 1.723 1.794 0.009 1.765 1.773 4.4 0.009 0.1765 1.773 4.4 0.009 0.1765 1.733 4.4 0.009 0.176 1.733 4.5 0.001 0.171 1.787 1.0 0.000 0.170 1.733 1.74 0.000 0.170 1.733 1.74 0.000 0.176 1.73 1.74 0.000 0.176 1.73 4.5 0.000 0.176 1.733 4.4 0.000 0.169 1.848 1.849 0.000 0.169 1.848 1.849 0.000 0.169 1.848 1.849 0.000 0.169 1.848 1.849 0.000 0.169 1.940 0.15 1.839 1.940 0.012 1.733 1.730 0.12 0.000 0.150 1.950 0.000 0.150 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150 0.000 0.150		C^*-S-C^* (overall)	1.819	1.817	0.019	1.809	1.827	242	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		in thirane	1.834	1.835	0.025	1.810	1.858	4	9
$ \begin{array}{c} \mbox{reg} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		in thietane: see ZCMXSP (1.817, 1.844)	1 827	1 876	0.019	1 9 1 1	1 927	20	
$ \begin{array}{c} 1 & Cut_{3} S_{3} \\ C_{1} C_{3} C_{3} S_{3} \\ C_{2} C_{3} S_{3} \\ C_{2} C_{3} S_{4} \\ C_{3} C_{3} S_{4} \\ C_{4} S_{5} S_{4} \\ C_{5} C_{5} S_{4} \\ C_{5} C_{5} C_{5} \\ C_{5} \\ C_{5} C_{5} \\ $		in tetrahydrothiopuran	1.827	1.820	0.018	1.811	1.837	20	
$\begin{array}{c} C_{q}-S_{s}-X_{s}^{-1} & 1863 & 1863 & 0015 & 1848 & 1848 & 59 \\ C_{q}-S_{s}-X_{s}^{-1} & C_{s}-S_{s}^{-1} & Correll) & 1.33 & 1.23 & 0.022 & 1.818 & 1.848 & 59 \\ C_{q}-S_{s}-X_{s}^{-1} & C_{s}-S_{s}^{-1} & C_{s}^{-1} &$		$C = CH_{z} = S = S$	1.823	1.821	0.014	1.812	1.832	41	
$\begin{array}{cccc} C_{q}^{2}-S(2) \\ C_{q}^{2}-S(2$		CC-S-S-X	1.863	1.865	0.015	1.848	1.878	11	
$ \begin{array}{c} Cq^{3-S}(2) & C-C-S-C^{4} & 1.751 & 1.755 & 0.017 & 1.740 & 1.764 & 61 \\ C-C-S-C^{4} & (in translation length of the translation length of transla$		$C^*-S-S-X$ (overall)	1.833	1.828	0.022	1.818	1.848	59	
$\begin{array}{c} \text{C-C-S-C-C} (in tertathiadivalene) \\ \text{C-C-S-C-C} (in tertathiadivalene) \\ \text{O-C-S-C} (in this highene) \\ \text{O-C-S-C} (in this highene) \\ \text{O-C-S-C} (in this highene) \\ \text{Car-SO}_{2}-C_{2} (1763 1764 0009 1756 1779 06) \\ \text{Car-SO}_{2}-C_{3} (1763 1763 1769 0001 1786 1786 1787 06) \\ \text{Car-SO}_{2}-C_{3} (1774 178 178 0003 1749 1785 06) \\ \text{Car-SO}_{2}-C_{3} (1774 178 0003 1749 1785 06) \\ \text{Car-SO}_{3} (1774 178 0003 1749 1785 06) \\ \text{Car-SO}_{3} (1774 178 0003 1749 1785 06) \\ \text{Car-SO}_{3} (1774 177 0000 1765 1779 04) \\ \text{Car-SC}_{3} (1774 177 074 0009 1765 1779 04) \\ \text{Car-SC}_{3} (1774 177 074 0009 1765 1779 04) \\ \text{Car-SC}_{4} (1774 177 074 0000 1765 1779 04) \\ \text{Car-SC}_{5} (1774 177 074 1774 0001 1762 1774 178 079 074 176 074 176 074 074 074 176 074 176 074 074 074 074 074 074 074 074 074 074$	$Csp^2-S(2)$	C=C-S-C*	1.751	1.755	0.017	1.740	1.764	61	
$\begin{array}{cccccccc} C-CC (in thiophene) & 1.712 & 1.712 & 0.013 & 1.703 & 1.723 & 60 \\ Car-SC_3 - C-CC (in thiophene) & 1.716 & 1.769 & 0.013 & 1.747 & 1.778 & 20 \\ Car-SC_3 - C-X & 1.753 & 1.764 & 0.009 & 1.736 & 1.769 & 0.67 \\ Car-SC_3 - C-X & 1.758 & 1.759 & 0.013 & 1.749 & 1.756 & 106 & 35 \\ Car-SC_3 - C-C & 1.700 & 1.790 & 0.170 & 1.781 & 1.783 & 1.04 \\ Car-SC_3 - C-C & 1.771 & 1.771 & 0.000 & 1.718 & 1.787 & 104 \\ Car-SC_3 - C-C & 1.773 & 1.774 & 0.000 & 1.761 & 1.774 & 138 \\ Car-S-C & 1.777 & 1.777 & 0.010 & 1.771 & 1.787 & 104 \\ Car-SC_3 - C-C & 1.777 & 1.777 & 0.010 & 1.771 & 1.783 & 1.784 & 1.774 \\ Car-SC_3 - C-C & 1.777 & 1.777 & 0.010 & 1.774 & 1.784 & 1.774 \\ Car-SC_4 - Car - S-S-X & 1.679 & 1.683 & 0.026 & 1.645 & 1.698 & 10 \\ Carj-SC_1 & NaC-S-X & 1.679 & 1.683 & 0.026 & 1.645 & 1.698 & 10 \\ Carj-SC_1 & NaC-S-X & 1.679 & 1.683 & 0.026 & 1.644 & 1.644 & 144 \\ Carj-C-S & CE ELDOM (1.611) \\ Carj-C-S & CE ELDOM (1.611) \\ Carj-C-S & CE ELDOM (1.611) \\ Carj-SC_3 & CC-S-X & 1.660 & 1.660 & 0.166 & 1.648 & 1.674 & 38 \\ (X_1N)_C-CS & (thioureas) & 1.681 & 1.684 & 0.020 & 1.693 & 96 \\ N-C(-S)_2 & CC & (thioureas) & 1.681 & 1.684 & 0.020 & 1.693 & 96 \\ N-C(-S)_2 & CC & C-S-C & (thioureas) & 1.681 & 1.684 & 0.021 & 1.639 & 120 \\ Carj-Sc(3) & Ph_{3}-Se^{-} & 1.390 & 1.329 & 0.006 & 1.924 & 1.396 & 13 \\ Carj-Sc(4) & C-S-S-X_{1} & 1.874 & 1.877 & 0.018 & 1.882 & 1.902 & 22 \\ Carj-Sc(4) & C-S-S-X_{2} & 1.387 & 1.887 & 1.887 & 1.887 & 1.877 & 0.18 & 1.848 & 98 & 52 \\ Carj-Sc(4) & C-S-S-X_{2} & 1.337 & 1.840 & 0.012 & 1.824 & 1.849 & 8 \\ Carj-Sc(4) & C-S-S-X_{2} & 1.337 & 1.881 & 1.887 & 1.877 & 0.018 & 1.848 & 1.869 & 552 \\ Carj-Sc(4) & C-S-S-X_{2} & 1.377 & 1.377 & 0.018 & 1.848 & 1.869 & 552 \\ Carj-Sc(4) & C-S-S-X_{2} & 1.337 & 1.887 & 1.387 & 0.018 & 1.848 & 1.510 & 10 \\ Carj-Sc(4) & C-S-S-X_{2} & 1.337 & 1.881 & 1.887 & 0.020 & 1.948 & 1.531 & 1.59 \\ Carj-Sc(4) & C-S-S-X_{2} & 1.337 & 1.840 & 0.012 & 1.824 & 1.849 & 8 \\ Carj-Te & Carj-Te & Carj-Te & 2.116 & 2.115 & 0.030 & 2.144 & 2.52 \\ Carj-Sc(4) & C-S-X_{2} & 1.$		C=C-S-C=C (in tetrathiafulvalene)	1.741	1.741	0.011	1.733	1.750	88	
$\begin{array}{c} Car-S(4) & Car-SC-Car & 1762 & 1776 & 0.018 & 1.747 & 1.756 & 1.778 & 20 \\ Car-S(3) & Car-SC-CA & 1.758 & 1.759 & 0.008 & 1.749 & 1.756 & 1.757 & 1.757 \\ Car-SC-CA & 1.758 & 1.759 & 0.010 & 1.743 & 1.756 & 1.757 & 1$		C=C-S-C=C (in thiophene)	1.712	1.712	0.013	1.703	1.722	60	
$ \begin{array}{c} Car - S(a) & Car - S(b) - C & 1.63 & 1.764 & 0.009 & 1.736 & 1.705 & 27 \\ Car - S(a) - Car - S(a) & Car - S(a) - Car - S(a) & 1.738 & 1.738 & 1.739 & 0.013 & 1.739 & 1.738 & 1.66 & 35 \\ Car - S(a) & Car - S(a) & Car - S(a) & 1.778 & 1.779 & 0.011 & 1.731 & 1.738 & 1.66 & 1.738 & 1.739 & 0.013 & 1.739 & 1.738 & 1.737 & 1.737 & 0.009 & 1.751 & 1.737 & 1.438 & Car - S-Car & 1.778 & 1.777 & 1.777 & 0.012 & 1.767 & 1.785 & 47 & Car - S-Car & 1.778 & 1.777 & 1.777 & 0.012 & 1.767 & 1.785 & 47 & Car - S-S & Car & 1.779 & 1.630 & 0.014 & 1.645 & 1.648 & 1.0 & Car - S-S & Car & 1.630 & 1.630 & 0.014 & 1.645 & 1.641 & 14 & Car - S-S & Car & 1.630 & 1.630 & 0.014 & 1.641 & 14 & Car - S-S & Car & Ch OLOS & 1.649 & 1.641 & 14 & Car - S-S & Car & Ch OLOS & 1.649 & 1.641 & 14 & Car - S-S & Car & Ch OLOS & 1.640 & 1.648 & 1.674 & 38 & (X_S N_S - Ca) - S-S & CA & 1.650 & 1.660 & 0.061 & 1.648 & 1.674 & 38 & (X_S N_S - Ca) - S-S & CA & 1.770 & 1.721 & 0.12 & 1.709 & 1.731 & 20 & Car - S-G & CA & CA & 1.770 & 1.721 & 0.12 & 1.709 & 1.731 & 20 & Car - S-G & CA & 1.770 & 1.721 & 0.12 & 1.709 & 1.731 & 20 & Car - S-G & CA & 1.770 & 1.721 & 0.012 & 1.799 & 1.312 & 20 & Car - S-G & CA & 1.877 & 1.877 & 1.875 & 0.018 & 1.848 & 1.998 & 21 & Car - S-G & CA & 1.877 & 1.877 & 1.878 & 1.88 & 0.012 & 1.872 & 1.903 & 1.22 & Car - S-G & CA & CA & CA & 1.877 & 1.878 & 1.888 & 0.012 & 1.872 & 1.903 & 1.22 & Car - S-G & CA & 1.877 & 1.878 & 1.888 & 0.012 & 1.878 & 1.88 & 0.95 & 5.2 & Car - S-G & CA & 1.878 & 1.887 & 0.023 & 1.872 & 1.938 & 1.669 & 1.641 & 1.857 & 1.878 & 1.88 & 0.67 & 1.678 & 1.878 & 1.88 & 0.67 & 1.68 & 0.014 & 1.857 & 1.878 & 1.88 & 0.67 & 1.68 & 0.014 & 1.857 & 1.88$	G (1)	O=C-S-C#	1.762	1.759	0.018	1.747	1.778	20	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Car-S(4)	$Car = SO_2 = C$	1.753	1.750	0.009	1.730	1.756	90	
$\begin{array}{cccc} Car-SG1 & Car-SG-TrA_2 & 1.70 & 1.79 & 0.010 & 1.73 & 1.79 & 40 & 50 \\ Car-SG2 & Car-SG-TA_2 & 1.778 & 1.779 & 0.010 & 1.731 & 1.738 & 40 & 50 & 50 & 50 & 50 & 50 & 50 & 50$		$Car = SO_2 - O - X$	1.752	1.750	0.008	1.749	1.750	106	35
$ \begin{array}{cccc} Gamma (Camber) & G$	Car=S(3)	Car = S(=0) - C	1.790	1.790	0.019	1.745	1.705	41	55
$ \begin{array}{c} Car - S(2) \\ Car - S(2) \\ Car - S - Car (in phenothizaine) \\ Car - S - Car (in phenothizaine) \\ Car - S - S \\ Car - S \\ $	Cur 5(5)	$Car-S^+-X_2$	1.778	1.779	0.010	1.771	1.787	10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Car-S(2)	Car-S-C*	1.773	1.774	0.009	1.765	1.779	44	
$ \begin{array}{c} Car-S-Car (in phenothizzine) & 1.764 & 1.764 & 1.760 & 1.760 & 1.769 & 48 \\ Car-S-S-X & 1.777 & 1.777 & 0.12 & 1.770 & 1.785 & 47 \\ Car-S-S-X & 1.777 & 1.633 & 0.026 & 1.645 & 1.698 & 10 \\ Cgp^1-S(1) & (C^*)C-S^* :see (PMUDS (1.599) & 1.630 & 0.014 & 1.619 & 1.641 & 1.619 \\ Cgn^2-S(1) & (C^*)C-S^* :see (PELDOM (1.611) &$		Car–S–Car	1.768	1.767	0.010	1.762	1.774	158	
$\begin{array}{ccc} C_{29}^{-5} - S_2 \\ C_{29}^{-5} - S_1 \\ C_{29}^{-5} - S_2 \\ C_{29}^{-5} - S_{$		Car-S-Car (in phenothiazine)	1.764	1.764	0.008	1.760	1.769	48	
$ \begin{array}{c} C_{2}p^{1}-S(1) \\ C_{2}p^{1}-S(1) \\ C_{2}p^{1}-S(2) \\ C_{2$		Car–S–S–X	1.777	1.777	0.012	1.767	1.785	47	
$ \begin{array}{c} C_{2}p^{3} - S(1) & (Net < S) & 1.630 & 1.630 & 0.014 & 1.619 & 1.641 & 14 \\ C_{2}p^{3} - S(1) & (C_{3}) - C-S & see [FMUDS (1.599) \\ (C_{3}) - C-S & see (FLDOM (1.611) & 1.675 & 0.024 & 1.656 & 1.689 & 245 \\ X_{3} - C_{4} (S \in C, N, O, S) & 1.671 & 1.675 & 0.024 & 1.656 & 1.689 & 245 \\ X_{3} N_{3} - C(S) & (She (1 - S, N) + 1.681 & 1.684 & 0.020 & 1.669 & 1.693 & 96 \\ N^{-} C(z - S)_{5} & 1.720 & 1.721 & 0.012 & 1.709 & 1.731 & 20 \\ C_{2}p^{3} - Sec (2) & Ce - C-Sec - C-C (in tetraselenafulvalenc) & 1.893 & 1.895 & 0.013 & 1.882 & 1.902 & 32 \\ C_{2}p^{-} Sec (2) & Ce - C-Sec - C-C (in tetraselenafulvalenc) & 1.893 & 1.895 & 0.013 & 1.832 & 1.902 & 32 \\ C_{2}p^{-} Sec (3) & C_{2} - Sec + S-X_{3} & 1.874 & 1.876 & 0.015 & 1.859 & 1.884 & 9 \\ C_{2}p^{-} Si(4) & C_{4} - Sec + X_{3} & 1.874 & 1.876 & 0.015 & 1.859 & 1.884 & 9 \\ C_{2}p^{-} Si(4) & C_{4} - Sec + X_{3} & 1.886 & 1.888 & 1.023 & 1.872 & 1.905 & 124 \\ C^{-} Si(4) & Car - Sic X_{3} & 1.886 & 1.868 & 0.014 & 1.857 & 1.878 & 0.124 \\ C_{2}p^{-} Te & 2.158 & 2.159 & 0.030 & 2.128 & 2.177 & 13 \\ C_{2}p^{-} Si(4) & Ce - Sic + X_{3} & 1.886 & 1.868 & 0.014 & 1.857 & 1.878 & 0.17 \\ C_{2}p^{2} - Te & Car - Te & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ C_{2}p^{2} - Te & Car - Te & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ C_{2}p^{2} - Te & Car - Te & 2.190 & 0.035 & 1.986 & 2.028 & 111 \\ C_{-1} & see PHASCL (2.306, 2.27) \\ C_{-1} & see CENDLU (2.64), 1XPASC (2.541, 2.513), \\ METAMM (2.522), BOUINI (2.416, 2.718) \\ C_{-1} & see CMBIDZ (2.53), HXPASC (2.541, 2.513), \\ METAMM (2.522), BOUINI (2.416, 2.718) \\ C_{-2} & See BIS(NUEL)(0, BIRTALIO, CTONSE \\ (2.244 - 2.851) \\ C_{-1} & C_{-1} & See PHASCL (2.366, 2.27) \\ C_{-1} & See PHASCL (2.367, 1.2749) \\ See also longer bonds in CILSAR (2.283), \\ BIHXIZ (2.357), CANLUY (2.749) \\ See also longer bonds in BARRIY, BOJPUL, \\ CETUTE, EPHTEA, OPNTEC10 (2.73 - 2.249) \\ C_{-1} & See PHASCL (0.273 - 2.240) \\ C_{-1} & See PHASCL (0.273 - 2.240) \\ C_{-1} & See PHASCL (0.273 - 2.240) \\ See also longer bonds in BARRIY$	$Csp^1-S(2)$	N=C-S-X	1.679	1.683	0.026	1.645	1.698	10	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$Csp^1 - S(1)$	$(N=C-S)^{(n)}$	1.630	1.630	0.014	1.619	1.641	14	
$ \begin{array}{c} (L_{3})_{2}-Ces (X \in Child O(101)) & 1.671 & 1.675 & 0.024 & 1.656 & 1.689 & 245 \\ X_{1}N_{-}-Ces (X \in Child O(101)) & 1.660 & 0.016 & 1.648 & 1.674 & 38 \\ X_{1}N_{1}-Ces (Child O(102)) & 1.660 & 0.016 & 1.648 & 1.674 & 38 \\ N-C(zs)_{5}-S-X & 1.660 & 1.681 & 1.684 & 0.020 & 1.699 & 1.693 & 96 \\ N-C(zs)_{5} & 1.720 & 1.721 & 0.012 & 1.709 & 1.731 & 20 \\ Cgr^{3}-Se(2) & Ce-Se-C-C (in tetraselenafulvalene) & 1.893 & 1.895 & 0.013 & 1.882 & 1.902 & 32 \\ Cgr^{3}-Se(2) & Ce-Se-C-C (in tetraselenafulvalene) & 1.893 & 1.895 & 0.013 & 1.882 & 1.902 & 32 \\ Cgr^{3}-Si(5) & CH_{-}Si-X_{+} & 1.877 & 1.877 & 1.0018 & 1.848 & 1.869 & 552 \\ Cgr^{3}-Si(4) & CH_{-}Si-X_{+} & 1.877 & 1.877 & 0.018 & 1.848 & 1.869 & 552 \\ Cgr^{3}-Si(4) & Car-Si-X_{5} & 1.877 & 1.888 & 1.868 & 0.023 & 1.872 & 1.905 & 124 \\ Cgr^{3}-Si(4) & Car-Si-X_{5} & 1.877 & 1.888 & 1.868 & 0.014 & 1.857 & 1.878 & 1.78 \\ Cgr^{3}-Si(4) & Car-Si-X_{5} & 1.877 & 1.840 & 0.012 & 1.824 & 1.849 & 8 \\ Cgr^{3}-Si(4) & Car-Fe & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ Cgr^{3}-Te & Car-Te & Car-Te & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ Cgr^{3}-Te & Car-Te & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ Cl-Cl & see PHASCL (2.306, 2.27) \\ Cl-Cl & see PHASCL (2.306, 2.27) \\ Cl-I & see CHEOU (2.044) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ Cl-S & cl-Fe & (n \sim 1)_{P}-Cl (N \simeq P aromatic) & 1.97 & 1.994 & 0.015 & 1.989 & 2.004 & 46 \\ Cl-P & (overall) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ Cl-Se & see BIRCU (2.357), ROGPOC (1.705) \\ cl-Se & see also longer bonds in CILSAR (2.283), BIHXIZ (2.357), CANLUY (2.749) \\ see also longer bonds in BARRIV, BOJPUL, \\ cETUTE, EPHTEA, OPNTECI0 (2.73- 2.275 & 0.009 & 2.066 & 2.078 & 5 \\ cl-Fe & (2.234-2.56) & 2.520 & 2.515 & 0.034 & 2.537 & 22 & 36 \\ see also longer bonds in BARRIV, BOJPUL, \\ cETUTE, EPHTEA, OPNTECI0 (2.73- 2.294) \\ F-NC(3) & F-N-C_{2} & 4.1065 & 1.404 & 0.016 & 1.395 & 1.416 & 9 \\ F-P(0) & in herafluorophosphate, PF_{7}^{-1} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ -Fe-N(3) & F-N-C_{2} $	$Csp^2=S(1)$	$(C^*)_2 = C = S: see IPMUDS (1.599)$ (Car) C = S: see CELDOM (1.611)							
$ \begin{array}{c} (y_1) = (y_1) $		$(Car)_2 = C = S. See CELDOM (1.011)$ (X) = C = S (X = C N O S)	1 671	1.675	0.024	1 656	1 689	245	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$X_{2} = C_{3} = C_{3} = C_{3}$	1.660	1.660	0.024	1.650	1.674	38	
$\begin{array}{cccc} & [\lambda-C]^{-S}(x_{2})_{2} & 1.720 & 1.721 & 0.012 & 1.709 & 1.731 & 20 \\ Cgr^{3}-Sec & Cfr-Se & 1.970 & 1.967 & 0.032 & 1.948 & 1.998 & 21 \\ Cgr^{3}-Sic(2) & C-C-Se - C-C (in tetraselenafulvalene) & 1.893 & 1.895 & 0.013 & 1.882 & 1.902 & 32 \\ Car-Sec(3) & Ph_{3}-Se^{+} & 1.930 & 1.929 & 0.006 & 1.924 & 1.936 & 1.3 \\ Cgr^{3}-Sic(4) & Cfr_{3}-Sir_{4} & 1.876 & 0.015 & 1.884 & 1.869 & 552 \\ Cr_{3}-Sic(4) & Cfr_{3}-Sir_{4} & 1.877 & 0.118 & 1.887 & 0.023 & 1.871 & 1.905 & 124 \\ C^{*}-Sir_{4} & (C^{*}-Sir_{4}) & 1.868 & 1.861 & 0.024 & 1.850 & 1.875 & 681 \\ Car-Sic(4) & Car-Sir_{4} & 1.887 & 1.837 & 1.887 & 0.023 & 1.871 & 1.905 & 124 \\ C^{*}-Sir_{4} & (C^{*}-Sir_{4}) & 1.868 & 1.868 & 0.014 & 1.857 & 1.878 & 178 \\ Cgr^{3}-Te & Cfr_{7} & 2.116 & 2.116 & 0.012 & 1.824 & 1.849 & 8 \\ Cgr^{3}-Te & Cfr_{7} & 2.116 & 2.116 & 0.020 & 2.104 & 2.130 & 72 \\ Cfr_{7} & see CEDCUJ (2044) & 1.414 & 1.419 & 0.026 & 1.403 & 1.431 & 252 \\ Cf-O & see PHASC (2.306, 2.27) \\ Cf-I & see CCMBIDZ (2.53), HXPASC (2.541, 2.513), \\ METAMM (2.552), BOUINI (2.416, 2.718) \\ Cl-N & see BECTAE (1.7431.757), BOGPOC (1.705) \\ Cf-P & (N \approx)_2 P-CI (N \approx P aromatic) & 1.997 & 1.994 & 0.015 & 1.989 & 2.004 & 46 \\ Cf-P & (verall) & 2.002 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ Cf-S & see BIRGUEI0, BIRHAL10, CTCNSE \\ (2.234-2.851) \\ Cl-Si & see BIRGUEI0, BIRHAL10, CTCNSE \\ (2.234-2.851) \\ Cl-Si & see BIRGUEI0, BIRHAL10, CTCNSE \\ C1-Fe & Cl-Te in range 2.342.60 & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in GLSAR (2.233), \\ BIHXIC (2.357), CANLUY (2.749) \\ C-Se & see BIRGUEI0, BIRHAL10, CTCNSE \\ C1-Fe & Cl-Te in range 2.342.60 & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in BARRIV, BOJPUL, \\ CETUTE, EPHTEA, OPNTECI0 (2.73-2.2075 & 0.009 & 2.066 & 2.078 & 5 \\ Cl-Fe & Cl-Te in range 2.40-2.60 & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in BARRIV, BOJPUL, \\ CETUTE, EPHTEA, OPNTECI0 (2.73-2.2075 & 0.004 & 1.524 & 1.530 & 24 \\ F-N(3) & F-N-C_{2} and F_{2}-N-C $		$(X_2N)_2$ -C=S (thioureas)	1.681	1.684	0.020	1.669	1.693	96	
$ \begin{array}{c} C_{3}P^{3}-Se \\ C_{3}P$		$N-C(\simeq S)_2$	1.720	1.721	0.012	1.709	1.731	20	
$\begin{array}{c} Cxp^{-2} {\rm Sec}(2) & {\rm Ce-C-Se-C-C} (in tetrasclenafulvalene) & 1.893 & 1.895 & 0.013 & 1.882 & 1.902 & 32 \\ Car-Se(3) & {\rm Ph}_3 {\rm Sec}^* & 1.930 & 1.929 & 0.006 & 1.924 & 1.936 & 13 \\ Cxp^{3} {\rm -Si}(3) & {\rm C}\# {\rm -Si}^* {\rm -X}_4 & 1.874 & 1.876 & 0.015 & 1.859 & 1.884 & 9 \\ Cx^{-5} {\rm -Si}_X ({\rm C}^* {\rm -C} {\rm -H}_3 {\rm x}; {\rm C}^* {\rm -H}_3 {\rm x}; {\rm C}^* {\rm -H}_3 {\rm x}; {\rm C}^* {\rm -Si} {\rm -X}_4 & 1.877 & 1.887 & 0.023 & 1.872 & 1.905 & 124 \\ {\rm C}^{-5} {\rm -Si}_X ({\rm C}^* {\rm -C} {\rm -H}_3 {\rm x}; {\rm C}^* {\rm -H}_3 {\rm x}; {\rm C}^* {\rm -Si} {\rm -X}_4 & 1.888 & 1.868 & 0.014 & 1.857 & 1.878 & 1.878 \\ Cx^{-5} {\rm -Si}_X ({\rm C}^* {\rm -C} {\rm -H}_3 {\rm -X}_1 & 1.868 & 1.868 & 0.014 & 1.857 & 1.878 & 1.78 \\ Cxp^{-1} {\rm -C} & {\rm C}^{-1} {\rm -C} & 2.158 & 2.159 & 0.030 & 2.128 & 2.177 & 13 \\ Cxp^{-1} {\rm -C} & {\rm C}^{-1} {\rm -C} & 2.116 & 2.115 & 0.020 & 2.128 & 2.177 & 13 \\ Cxp^{-1} {\rm -C} & {\rm c}^{-1} {\rm -C} & 2.116 & 2.115 & 0.020 & 2.128 & 2.130 & 72 \\ Cl {\rm -I} & {\rm see PLACU} (2.044) & Cl {\rm -I} {\rm -Si} {\rm -Si} {\rm -Si} {\rm -Si} {\rm -Si} {\rm -Si} {\rm -P} {\rm c} {\rm -2} {\rm -11} {\rm -Si} {\rm -Si} {\rm -2} {$	Csp ³ –Se	C#−Se	1.970	1.967	0.032	1.948	1.998	21	
$\begin{array}{c} Car-Sc(3) & \text{Ph}_{3}\text{-Sc}^{-} & 1.930 & 1.929 & 0.006 & 1.924 & 1.936 & 13 \\ Csp^3-Si(4) & Cf_{3}\text{-Si}^{-}X_{4} & 1.874 & 1.876 & 0.015 & 1.859 & 1.884 & 9 \\ Csp^3-Si(4) & Cf_{3}\text{-Si}X_{3} & 1.877 & 1.877 & 1.877 & 0.018 & 1.848 & 1.869 & 552 \\ C^{+}\text{-Si}X_{3} (C^{+}=CH_{3} \text{ excluded}) & 1.888 & 1.887 & 0.023 & 1.872 & 1.905 & 124 \\ Car-Si(4) & Car-Si-X_{3} & 1.868 & 1.868 & 1.0024 & 1.857 & 1.878 & 178 \\ Csp^3-Si(4) & Car-Si-X_{3} & 1.868 & 1.868 & 1.868 & 0.014 & 1.857 & 1.878 & 178 \\ Csp^3-Te & Cf_{3}-Te & 2.158 & 2.159 & 0.030 & 2.128 & 2.177 & 13 \\ Car-Te & Car-Te & 2.158 & 2.159 & 0.030 & 2.128 & 2.177 & 13 \\ Car-Te & Car-Te & 2.168 & 2.116 & 0.020 & 2.104 & 2.130 & 72 \\ Cl-1 & \sec PHASCL (2.306, 2.227) \\ Cl-2 & Cl-P & (N \simeq)_{7}P-Ol (N \simeq P \text{ aromatic}) & 1.997 & 1.994 & 0.015 & 1.989 & 2.004 & 46 \\ Cl-P & (N \simeq)_{7}P-Ol (N \simeq P \text{ aromatic}) & 1.997 & 1.994 & 0.015 & 1.988 & 2.004 & 46 \\ Cl-P & (Overall) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ Cl-S & Cl-Se & \sec BIROUEI0, BIRHAL10, CTCNSE \\ (2.234-2.851) \\ Cl-Si(4) & Cl-Si-X_{3} \text{ and } Cl_{3}-Si-X & 2.020 & 2.012 & 0.015 & 2.007 & 2.036 & 5 \\ Cl-Si(4) & Cl-F_{1} \text{ in } \text{ range } 2.34-2.60 & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ \text{see also longer bonds in } BARRIV, BOJPUL, \\ CETUTE, EPHTEA, OPNTEC10 (2.73- 2.207) & 0.025 & 1.563 & 1.598 & 72 \\ F-N(3) & F-N-C_{2} \text{ and } F_{3}-N-C & 1.406 & 1.404 & 0.016 & 1.395 & 1.416 & 9 \\ F-P(6) & \text{ in hexafluorophosphate, } FF_{6}^{-} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F-P(6) & \text{ in hexafluorophosphate, } FF_{6}^{-} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F-P(6) & \text{ in hexafluorophosphate, } FF_{6}^{-} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F-P(6) & \text{ in hexafluorophosphate, } FF_{6}^{-} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F-P(6) & \text{ in hexafluorophosphate, } FF_{6}^{-} & 1.579 & 1.547 & 0.025 & 1.563 & 1.598 & 72$	Csp^2 -Se(2)	C=C-Se-C=C (in tetraselenafulvalene)	1.893	1.895	0.013	1.882	1.902	32	
$\begin{array}{c} C_{9}^{p-Si}(5) & C_{9}^{p-Si}(-X_{4} & 1.874 & 1.876 & 0.015 & 1.859 & 1.884 & 9 \\ C_{9}^{p-Si}(4) & C_{H_{3}}^{p-Si-X_{3}} & 1.857 & 1.857 & 0.018 & 1.848 & 1.869 & 552 \\ C^{+}Si-X_{3} (0 cer all) & 1.863 & 1.861 & 0.024 & 1.857 & 1.875 & 681 \\ Ca^{p-Si}(4) & Ca^{p-Si-X_{3}} & 1.837 & 1.868 & 1.868 & 0.014 & 1.857 & 1.875 & 681 \\ Ca^{p-Si}(4) & Ca^{p-Si-X_{3}} & 1.837 & 1.840 & 0.012 & 1.824 & 1.849 & 8 \\ Cg^{p-Te} & C_{9}^{p-Te} & 2.158 & 2.159 & 0.030 & 2.128 & 2.177 & 13 \\ Ca^{p-Te} & C_{9}^{p-Te} & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ Cg^{p-2}Te & see CEDCUJ (2.044) & \\ Cl-Cl & see PHASCL (2.306, 2.227) & \\ Cl-1 & see CMBIDZ (2.563), HXPASC (2.541, 2.513), & \\ METAMM (2.552), BQUINI (2.416, 2.718) & \\ Cl-N & see BECTAE (1.743-1.757), BOGPOC (1.705) & \\ Cl-O(1) & n CO_{4}^{-} & 1.414 & 1.419 & 0.026 & 1.403 & 1.431 & 252 \\ Cl-P & (N \approx)_{1}P^{-C}(1 N \approx P aromatic) & 1.997 & 1.994 & 0.015 & 1.989 & 2.004 & 46 \\ Cl-P (overall) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ Cl-S & see also longer bonds in CILSAR (2.283), & \\ BHXLZ (2.357), CANLUY (2.749) & \\ Cl-Se & see BIGUE10, BIRHAL10, CTCNSE & & \\ (2.234-2.851) & \\ Cl-Se & see BIGUE10, BIRHAL10, CTCNSE & & \\ (2.234-2.851) & \\ Cl-Se & see BIGUE10, BIRHAL10, CTCNSE & & \\ (2.24-2.851) & \\ Cl-Te & nrange 2.34-2.60 & 2.502 & 2.015 & 0.004 & 2.537 & 22 & 36 \\ see also longer bonds in BARRIV, BOJPUL, & \\ CETUTE, EPHTEA, OPNTEC10 (2.73- & 2.94) & \\ F^{-N}(3) & F^{-N-C}_{2} and F_{2}^{-N-C} & 1.406 & 1.404 & 0.016 & 1.395 & 1.416 & 9 \\ F^{-P}(6) & in hexafluorophosphate, FF_{6}^{-1} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F^{-P}(3) & (N \approx)_{2}P^{-F} (N \approx P aromatic) & 1.495 & 1.497 & 0.016 & 1.481 & 1.510 & 10 \\ F^{-S}(6) & in f_{2}S^{0}(-O)^{-N} (see BUDTEZ) & 1.644 & 1.646 & 0.011 & 1.626 & 1.649 & 6 \\ F^{-S}(6) & in f_{2}S^{0}(-O)^{-N} (see BUDTEZ) & 1.527 & 1.528 & 0.004 & 1.524 & 1.530 & 24 & 37 \\ F^{-Si}(6) & in SiFe_{4}^{-2} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ F^{-Si}(6) & in SiFe_{4}^{-2} & 1.694 & 1.701 & 0.013 & 1.677 & 1.$	Car-Se(3)	Ph ₃ -Se ⁺	1.930	1.929	0.006	1.924	1.936	13	
$\begin{array}{c} Cap^{-S1(4)} & CH_3-Si-X_3 & 1.857 & 1.857 & 0.018 & 1.848 & 1.869 & 552 \\ C^{+}-Si-X_3 (C^{+} CH_3 excluded) & 1.863 & 1.861 & 0.024 & 1.850 & 1.875 & 681 \\ Car-Si (4) & Car-Si-X_3 & 1.868 & 1.861 & 0.024 & 1.857 & 1.878 & 178 \\ Car^{-1}C & Car-Si-X_3 & 1.868 & 1.861 & 0.012 & 1.824 & 1.849 & 8 \\ Cgr^{-1}C & Car-Te & 2.158 & 2.159 & 0.030 & 2.128 & 2.177 & 13 \\ Car-Te & Car-Te & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ Cf-CI & see CHBIDZ (2.563), HXPASC (2.541, 2.513), \\ METAMM (2.552), BQUINI (2.416, 2.718) \\ CI-CI & see CHBIDZ (2.563), HXPASC (2.541, 2.513), \\ METAMM (2.552), BQUINI (2.416, 2.718) \\ CI-O(1) & in CIO_4^{-7} & 1.414 & 1.419 & 0.026 & 1.403 & 1.431 & 252 \\ CI-P & (N \approx)_2P-CI (N \approx P aromatic) & 1.997 & 1.994 & 0.015 & 1.989 & 2.004 & 46 \\ CI-P & (N \approx)_2P-CI (N \approx P aromatic) & 1.997 & 1.994 & 0.015 & 1.989 & 2.004 & 46 \\ CI-P & (N \approx)_2P-CI (N \approx P aromatic) & 2.0072 & 2.079 & 0.023 & 2.047 & 2.091 & 6 \\ see also longer bonds in CILSAR (2.283), \\ BIHXIZ (2.357), CANLUY (2.749) \\ cI-Se & see BIRGUE10, BIRHAL10, CTCNSE \\ (2.234-2.851) \\ CI-Si & CI-St (an trange 2.34-2.60 & 2.502 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in BLRRIV, BOJPUL, \\ CETUTE, EPHTEA, OPNTEC10 (2.73-2.94) \\ reproder & range 2.34-2.60 & 2.502 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in BARRIV, BOJPUL, \\ CETUTE, EPHTEA, OPNTEC10 (2.73-2.94) \\ reproder & range 2.34-2.60 & 2.502 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in BARRIV, BOJPUL, \\ CETUTE, FPHTEA, OPNTEC10 (2.73-2.94) \\ reproder & range 2.34-2.60 & 2.520 & 2.515 & 1.563 & 1.598 & 72 \\ reproder & range 2.34-2.60 & 2.520 & 2.515 & 5.63 & 1.598 & 72 \\ reproder & range 2.34-2.60 & 2.520 & 2.515 & 5.63 & 1.598 & 72 \\ reproder & range 2.34-2.60 & 2.520 & 2.515 & 5.63 & 1.598 & 72 \\ reproder & range 2.34-2.60 & 2.520 & 2.515 & 5.63 & 1.598 & 72 \\ reproder & range 2.34-2.60 & 1.527 & 1.528 & 0.004 & 1.524 & 1.530 & 100 \\ reproder & reproder & range 2.34-2.60 & 2.520 & 2.515 & 5.63 & 1.598 & 72 \\ rep$	$Csp^3-Si(5)$	$C\#-Si^X_4$	1.874	1.876	0.015	1.859	1.884	9	
$\begin{array}{c} C^{+}Si^{+}X_{3}\ (cv=cH, ectuded) & 1.885 & 1.881 & 0.023 & 1.872 & 1.905 & 1.24 \\ C^{+}Si^{+}X_{3}\ (cv=cH) & 1.868 & 1.861 & 0.024 & 1.850 & 1.875 & 681 \\ Ca^{-}Si^{+}X_{3}\ (cv=cH) & 1.868 & 1.868 & 0.014 & 1.857 & 1.878 & 178 \\ Ca^{-}Si^{+}C & Ca^{-}Si^{+}X_{3} & 1.868 & 1.868 & 0.012 & 1.824 & 1.849 & 8 \\ Csp^{3}-Te & C_{\pi}^{+}Te & 2.158 & 2.159 & 0.030 & 2.128 & 2.177 & 13 \\ Car^{-}Te & Ca^{-}Te & 2.156 & 2.116 & 2.002 & 2.104 & 2.130 & 72 \\ Csp^{2}-Te & see CEDCU (2.044) & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ Cl-Cl & see PHASCL (2.306, 2.27) \\ Cl-I & see CHBDDZ (2.563) HXPASC (2.541, 2.513), \\ METAMM (2.552), BQUINI (2.416, 2.718) & & & & & & & \\ METAMM (2.552), BQUINI (2.416, 2.718) & & & & & & & & \\ Cl-O(1) & see BECTAE (1.743-1.757), BOGPOC (1.705) & & & & & & & & & & \\ Cl-O(1) & in ClO_{4}^{-} & 1.414 & 1.419 & 0.026 & 1.403 & 1.431 & 252 \\ Cl-P & (N \approx)_{2}P-Cl (N \approx P aromatic) & 1.997 & 1.994 & 0.015 & 1.989 & 2.004 & 46 \\ C-P & (overall) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ Cl-S & Glowerall) & 2.002 & 2.019 & 0.023 & 2.047 & 2.091 & 6 \\ see also longer bonds in CILSAR (2.283), \\ BIHXIZ (2.357), CANLUY (2.749) & & & & & & \\ see also longer bonds in CILSAR (2.283), \\ BIHXIZ (2.357), CANLUY (2.749) & & & & & & & \\ Cl-Se & see BIRGUE10, BIRHAL10, CTCNSE & & & & & & & \\ (2.234-2.851) & & & & & & & & & & & \\ Cl-Te & Cl-Te & In range 2.34-2.60 & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in BARRIV, BOJPUL, & & & & & & & & & & & & & & & & & & &$	$Csp^3-Si(4)$	CH_3-SI-X_3	1.857	1.857	0.018	1.848	1.869	552	
$\begin{array}{c} Car-Si(4) & Car-Si-X_3 & 1.803 & 1.803 & 1.804 & 1.857 & 1.813 & 1.813 \\ Car-Si-X_4 & Car-Si-X_3 & 1.833 & 1.846 & 0.014 & 1.857 & 1.813 & 178 \\ Csp^3-Te & C\#-Te & 2.158 & 2.159 & 0.030 & 2.128 & 2.177 & 13 \\ Car-Te & Car-Te & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ Csp^3-Te & see CHDUJ (2.044) & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ Cl-Cl & see PHASCL (2.306, 2.27) \\ Cl-I & see CMBIDZ (2.563), HXPASC (2.541, 2.513), \\ METAMM (2.552), BQUINI (2.416, 2.718) \\ Cl-N & see BECTAE (1.743-1.757), BOGPOC (1.705) \\ Cl-O(1) & in ClO_4^{} & 1.414 & 1.419 & 0.026 & 1.403 & 1.431 & 252 \\ Cl-P & (N \approx)2P-Cl (N \approx P aromatic) & 1.997 & 1.994 & 0.015 & 1.986 & 2.008 & 111 \\ Cl-S & Cl-Se & (overall) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ Cl-S & Gl-Se & (overall) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ Cl-Se & see BIRGUE10, BIRHAL10, CTCNSE & (2.234-2.851) \\ Cl-Te & Cl-Te & in range 2.34-2.60 & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in BARRIV, BOJPUL, \\ CETUTE, PHTEA, OPNTEC10 (2.73-2.94) \\ F-N(3) & F-N-C_2 and F_2-N-C & 1.406 & 1.404 & 0.016 & 1.395 & 1.416 & 9 \\ F-P(6) & in hexafluorophosphate, PF_6^{} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F-P(3) & (N \approx)_2P-F (N \approx P aromatic) & 1.495 & 1.497 & 0.016 & 1.481 & 1.510 & 10 \\ F-S(4) & in F_2-S(-)-N (see BUDTEZ) & 1.640 & 1.646 & 0.011 & 1.626 & 1.649 & 6 \\ r_7-S(6) & in SF_8^{-2} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F-S(6) & in SF_8^{-2} & 1.679 & 1.578 & 0.004 & 1.524 & 1.530 & 24 & 37 \\ F-S(6) & in SF_8^{-2} & 1.679 & 1.578 & 0.004 & 1.524 & 1.530 & 24 & 37 \\ F-S(6) & in SF_8^{-2} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ F-S(6) & in SF_8^{-2} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ F-S(6) & in SF_8^{-2} & 1.578 & 1.588 & 0.014 & 1.584 & 1.599 & 24 \\ \end{array}$		C^*-Si-X_3 ($C^* = CH_3$ excluded) C^*-Si-X_3 (overall)	1.000	1.00/	0.023	1.872	1.905	124	
$\begin{array}{ccc} Cap^{1-S(1)}{C} & CaC-Si-X_{3} & 1.837 & 1.840 & 0.012 & 1.824 & 1.849 & 8 \\ Csp^{3}-Te & C_{\mu}-Te & 2.158 & 2.159 & 0.030 & 2.128 & 2.177 & 13 \\ Cap^{2}-Te & Car-Te & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ Cp^{2}-Te & see CEDCUJ (2.044) & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ C-Tc & see CMBIDZ (2.553), HXPASC (2.541, 2.513), \\ METAMM (2.552), BQUINI (2.416, 2.718) & 0.026 & 1.403 & 1.431 & 252 \\ CI-O & see BECTAE (1.743-1.757), BOGPOC (1.705) & 0.026 & 1.403 & 1.431 & 252 \\ CI-P & (N \approx)_{2}P-CI (N \approx P aromatic) & 1.997 & 1.994 & 0.015 & 1.989 & 2.004 & 46 \\ CI-P (overall) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ CI-S & see BIRGUE10, BIRHAL10, CTCNSE \\ (2.234-2.351) & 0.026 & 2.072 & 2.075 & 0.009 & 2.066 & 2.078 & 5 \\ CI-Te & CI-Te in range 2.34-2.60 & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in BARIV, BOJPUL, \\ CETUTE, EPHTEA, OPNTEC10 (2.73-2.03) & 72 & 72 & 72 & 72 \\ -2.94) & -2.94i & -2.9$	Car-Si(4)	$Car-Si-X_3$ (over all)	1.805	1.861	0.024	1.850	1.875	178	
$ \begin{array}{cccc} C_{p}^{2}-Te & C_{ff}^{2}-Te & 2.158 & 2.159 & 0.030 & 2.128 & 2.177 & 13 \\ Car-Te & Car-Te & 2.116 & 2.116 & 0.020 & 2.104 & 2.130 & 72 \\ Csp^{2}-Te & see CEDCUJ (2.044) & 2.116 & 2.116 & 0.020 & 2.104 & 2.130 & 72 \\ Cl-Cl & see PHASCL (2.306, 2.27) & 2.104 & 2.130 & 72 \\ Cl-I & see CMBIDZ (2.563), HXPASC (2.541, 2.513), & METAMM (2.552), BQUINI (2.416, 2.718) \\ Cl-O(1) & in ClO_4 & 1.414 & 1.419 & 0.026 & 1.403 & 1.431 & 252 \\ Cl-O(1) & in ClO_4 & 2.052 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ Cl-S & CL-S & (verall) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ Cl-S & see also longer bonds in CILSAR (2.283), & BHXIZ (2.357), CANLUY (2.749) \\ Cl-Si & see also longer bonds in CILSAR (2.283), & BHXIZ (2.357), CANLUY (2.749) \\ Cl-Si & Cl-Si & x_1 (monchloro) & 2.072 & 2.075 & 0.009 & 2.066 & 2.078 & 5 \\ Cl_2 & (2.234-2.851) & 2.072 & 2.075 & 0.009 & 2.066 & 2.078 & 5 \\ Cl-Te & Cl-Te & in range 2.34-2.60 & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in BARRIV, BOJPUL, & CTTUTE, EPHTEA, OPNTECI0 (2.73-2.94) \\ CFUTE, EPHTEA, OPNTECI0 (2.73-2.94) \\ F-N(3) & F-N-C_2 and F_2-N-C & 1.406 & 1.404 & 0.016 & 1.395 & 1.416 & 9 \\ F-P(6) & in hexafluorophosphate, PF_6^{-1} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F-P(3) & (N \simeq)_2 P-F (N \simeq P aromatic) & 1.495 & 1.497 & 0.016 & 1.481 & 1.510 & 10 \\ FS(4) & F_2-S(4) & F_2-S(-6) & -1.770 & in a wide variety of environments; F-S(6) in \\ F_2-S(6) & in SiF_6^{-1} & 1.636 & 1.639 & 0.033 & 1.602 & 1.530 & 24 & 37 \\ F-Si(6) & in SiF_6^{-1} & 1.636 & 1.639 & 0.033 & 1.602 & 1.557 & 10 \\ F-Si(6) & in SiF_6^{-1} & 1.638 & 1.587 & 0.014 & 1.581 & 1.599 & 24 \\ \end{array}$	Csp^1 -Si(4)	$C=C-Si-X_{2}$	1.837	1.840	0.014	1.824	1.849	8	
$\begin{array}{ccc} Car-Te & Car-Te & 2.116 & 2.115 & 0.020 & 2.104 & 2.130 & 72 \\ Csp^2=Te & see CBCUJ (2.044) & 2.130 & 72 \\ csee CMBIDZ (2.563), HXPASC (2.541, 2.513), & METAMM (2.552), BQUINI (2.416, 2.718) \\ CI-I & see CMBIDZ (2.563), HXPASC (2.541, 2.513), & METAMM (2.552), BQUINI (2.416, 2.718) \\ CI-N & see BECTAE (1.743-1.757), BOGPOC (1.705) \\ CI-O(1) & in CIO_4^- & 1.414 & 1.419 & 0.026 & 1.403 & 1.431 & 252 \\ CI-P & (N \approx)_2 P-CI (N \approx P aromatic) & 1.997 & 0.015 & 1.989 & 2.004 & 46 \\ CI-P (overall) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ CI-S & CI-S & (overall) & 2.072 & 2.079 & 0.023 & 2.047 & 2.091 & 6 \\ see also longer bonds in CILSAR (2.283), & BIHXIZ (2.357), CANLUY (2.749) \\ CI-Se & see BIRGUE10, BIRHAL10, CTCNSE \\ (2.234-2.851) \\ CI-Te & CI-Te & in range 2.34-2.60 & 2.520 & 2.012 & 0.015 & 2.007 & 2.036 & 5 \\ CI-Te & CI-Te & in range 2.34-2.60 & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in BARRIV, BOJPUL, \\ CETUTE, EPHTEA, OPNTEC10 (2.73-2.94) \\ F-N(3) & F-N-C_2 and F_2-N-C & 1.406 & 1.404 & 0.016 & 1.395 & 1.416 & 9 \\ F-P(6) & in hexafluorophosphate, PF_6^- & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F-P(6) & in hexafluorophosphate, PF_6^- & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F-S(4) & in F_2-S0_2-C_2 (see FPSULF10, BETJOZ) & 1.640 & 1.646 & 0.011 & 1.626 & 1.649 & 6 \\ F-S-S(6) & in SiF_6^{-7} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ F-Si(6) & in SiF_6^{-7} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ F-Si(6) & in SiF_6^{-7} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ F-Si(6) & in SiF_6^{-7} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ F-Si(6) & in SiF_6^{-7} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ F-Si(6) & in SiF_6^{-7} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ F-Si(6) & F-Si-X_3 & 1.588 & 1.587 & 0.014 & 1.581 & 1.599 & 24 \\ \end{array}$	Csp^3 -Te	C#-Te	2.158	2.159	0.030	2.128	2.177	13	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Car-Te	Car-Te	2.116	2.115	0.020	2.104	2.130	72	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Csp ² =Te	see CEDCUJ (2.044)							
$\begin{array}{cccccc} CI-I & see CMBIDZ (2.563), HXPASC (2.541, 2.513), \\ METAMM (2.552), BQUINI (2.416, 2.718) \\ CI-N & see BECTAE (1.743-1.757), BOGPOC (1.705) \\ CI-O(1) & in CIO_4^- & 1.414 & 1.419 & 0.026 & 1.403 & 1.431 & 252 \\ CI-P & (N\simeq)_2 P-CI (N\simeq P aromatic) & 1.997 & 1.994 & 0.015 & 1.986 & 2.028 & 111 \\ CI-S & CI-S (overall) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ CI-S & CI-S (overall) & 2.072 & 2.079 & 0.023 & 2.047 & 2.091 & 6 \\ & see also longer bonds in CILSAR (2.283), \\ & BIHXIZ (2.357), CANLUY (2.749) \\ CI-Se & see BIRGUE10, BIRHAL10, CTCNSE \\ & (2.234-2.851) \\ CI-Si(4) & CI-Si-X_3 (monochloro) & 2.072 & 2.075 & 0.009 & 2.066 & 2.078 & 5 \\ CI_2 - Si-X_3 and CI_3 - Si-X & 2.020 & 2.012 & 0.015 & 2.007 & 2.036 & 5 \\ CI-Te & CI-Te in range 2.34-2.60 & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ see also longer bonds in BARRIV, BOJPUL, \\ & CETUTE, EPHTEA, OPNTEC10 (2.73-2.94) \\ F-N(3) & F-N-C_2 and F_2-N-C & 1.406 & 1.404 & 0.016 & 1.395 & 1.416 & 9 \\ F-P(6) & in hexafluorophosphate, PF_6^{-1} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F-P(3) & (N\simeq)_2 P-F (N\simeq P aromatic) & 1.495 & 1.497 & 0.016 & 1.481 & 1.510 & 10 \\ F-S & 43 observations in range 1.4091.770 in a wide variety of environments; F-S(6) in \\ & F_2^{-SO}_2 - C_2 (see FPSULF10, BETJOZ) & 1.640 & 1.646 & 0.011 & 1.626 & 1.649 & 6 \\ F-S(4) in F_2^{-S}(=O)-N (see BUDTEZ) & 1.527 & 1.528 & 0.004 & 1.524 & 1.530 & 24 & 37 \\ F-Si(6) & in SiF_6^{2-} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ F-Si(6) & in SiF_6^{2-} & 1.636 & 1.639 & 0.035 & 1.602 & 1.657 & 10 \\ F-Si(4) & F-Si-X_3 & 1.588 & 1.587 & 0.014 & 1.581 & 1.599 & 24 \\ \end{array}$	Cl-Cl	see PHASCL (2.306, 2.227)							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CI-I	see CMBIDZ (2.563), HXPASC (2.541, 2.513),							
$\begin{array}{c} \text{CI-N} & \text{is de BLCTAE} (1.74) = 1.737, \text{ BOOLTOC} (1.703) \\ \text{CI-O(1)} & \text{in CCl}_4^- & 1.414 & 1.419 & 0.026 & 1.403 & 1.431 & 252 \\ \text{CI-P} & (N \simeq)_2 \text{P-CI} (N \simeq P \text{ aromatic}) & 1.997 & 1.994 & 0.015 & 1.989 & 2.004 & 46 \\ & \text{CI-P} (overall) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ \text{CI-S} & \text{CI-S} & (overall) & 2.072 & 2.079 & 0.023 & 2.047 & 2.091 & 6 \\ & \text{see also longer bonds in CILSAR} (2.283), \\ & \text{BIHXIZ} (2.357), \text{CANLUY} (2.749) \\ \text{CI-Se} & \text{see BIRGUE10, BIRHAL10, CTCNSE} \\ & (2.234-2.851) \\ \text{CI-Si} & \text{CI-Fe in range 2.34-2.60} & 2.520 & 2.012 & 0.015 & 2.007 & 2.036 & 5 \\ \text{CI-Te} & \text{CI-Te in range 2.34-2.60} & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ & \text{see also longer bonds in BARRIV, BOJPUL,} \\ & \text{CETUTE, EPHTEA, OPNTEC10} (2.73-2.94) \\ \text{F-N(3)} & \text{F-N-C}_2 \text{ and } \text{F}_2-N-C & 1.406 & 1.404 & 0.016 & 1.395 & 1.416 & 9 \\ \text{F-P(6)} & \text{in hexafluorophosphate, PF_6^-} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ \text{F-P(3)} & (N \simeq)_2 \text{P-F} (N \simeq P \text{ aromatic}) & 1.495 & 1.497 & 0.016 & 1.481 & 1.510 & 10 \\ \text{F-S} & 43 \text{ observations in range 1.409-1.770 in a wide} \\ variety of environments; \text{F-S(6) in} \\ & \text{F}_2\text{-S(2)} \text{-C} (\text{ see BUDTEZ}) & 1.640 & 1.646 & 0.011 & 1.626 & 1.649 & 6 \\ \text{F-S(4) in } \text{F}_2\text{-S}(\text{-C}) \text{-N} (\text{see BUDTEZ}) & 1.527 & 1.528 & 0.004 & 1.524 & 1.530 & 24 & 37 \\ \text{F-Si(6)} & \text{in SiF}_6^{2^-} & 1.604 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ \text{F-Si(4)} & \text{F-Si-X}_4 & 1.636 & 1.639 & 0.035 & 1.602 & 1.657 & 10 \\ \text{F-Si(4)} & \text{F-Si-X}_3 & 1.588 & 1.587 & 0.014 & 1.581 & 1.599 & 24 \\ \end{array}$	CLN	$ \begin{array}{c} \text{METAMM} (2.552), \text{ BQUINI} (2.410, 2.718) \\ \text{see } \text{ BECTAE} (1.742 - 1.757), \text{ BOCBOC} (1.705) \\ \end{array} $							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C = N	$in ClO_{-}^{-}$	1 4 1 4	1 410	0.026	1 403	1 / 3 1	252	
$\begin{array}{c} \text{Cl-P}(\text{overall}) & 2.008 & 2.001 & 0.035 & 1.986 & 2.021 & 100 \\ \hline \text{Cl-S}(\text{overall}) & 2.008 & 2.001 & 0.035 & 1.986 & 2.028 & 111 \\ \hline \text{Cl-S}(\text{overall}) & 2.072 & 2.079 & 0.023 & 2.047 & 2.091 & 6 \\ \hline \text{see also longer bonds in CILSAR (2.283),} \\ & \text{BIHXIZ (2.357), CANLUY (2.749)} \\ \hline \text{Cl-Se} & \text{see BIRGUE10, BIRHAL10, CTCNSE} \\ & (2.234-2.851) \\ \hline \text{Cl-Si-X}_3 (\text{monochloro}) & 2.072 & 2.075 & 0.009 & 2.066 & 2.078 & 5 \\ \hline \text{Cl}_2-\text{Si-X}_3 (\text{monochloro}) & 2.052 & 0.015 & 2.007 & 2.036 & 5 \\ \hline \text{Cl}_2-\text{Si-X}_2 \text{ and } \text{Cl}_3-\text{Si-X} & 2.020 & 2.012 & 0.015 & 2.007 & 2.036 & 5 \\ \hline \text{Cl-Te in range 2.34-2.60} & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ \text{see also longer bonds in BARRIV, BOJPUL,} \\ \hline \text{CETUTE, EPHTEA, OPNTEC10 (2.73-2.94)} \\ \hline \text{F-N(3)} & \text{F-N-C}_2 \text{ and } \text{F}_2-\text{N-C} & 1.406 & 1.404 & 0.016 & 1.395 & 1.416 & 9 \\ \hline \text{F-P(6)} & \text{in hexafluorophosphate, PF_6^{-7}} & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ \hline \text{F-P(3)} & (\text{N} \simeq)_2\text{,}\text{P-F} (\text{N} \cong P \text{ aromatic}) & 1.495 & 1.497 & 0.016 & 1.481 & 1.510 & 10 \\ \hline \text{F-S} & 43 \text{ observations in range 1.409-1.770 in a wide} \\ & \text{variety of environment; F-S(6) in} \\ \hline \text{F}_2\text{-S}(0_2-\text{C}_2 (\text{see FPSULF10, BETJOZ)} & 1.640 & 1.646 & 0.011 & 1.626 & 1.649 & 6 \\ \hline \text{F}-\text{S}(4) \text{ in } \text{F}_2-\text{S}(-)-\text{N} (\text{see BUDTEZ}) & 1.527 & 1.528 & 0.004 & 1.524 & 1.530 & 24 & 37 \\ \hline \text{F-Si(6)} & \text{in SiF}_6^{-7} & 1.636 & 1.639 & 0.033 & 1.602 & 1.657 & 10 \\ \hline \text{F}-\text{Si}(4) & \textbf{F}-\text{Si}-X_3 & 1.588 & 1.587 & 0.014 & 1.581 & 1.599 & 24 \\ \hline \end{array}$	Cl-P	$(N \simeq)_2 P - CI (N \simeq P aromatic)$	1.997	1 994	0.020	1 989	2 004	46	
$\begin{array}{cccc} \text{Cl-S} & \begin{array}{c} \text{Cl-S} & (\text{overall}) & 2.072 & 2.079 & 0.023 & 2.047 & 2.091 & 6 \\ & & & & & & & & & & & & & & & & &$		Cl-P (overall)	2.008	2.001	0.035	1.986	2.028	111	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cl–S	Cl-S (overall)	2.072	2.079	0.023	2.047	2.091	6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		see also longer bonds in CILSAR (2.283),							
$ \begin{array}{c} \text{Cl-Se} & \text{see BIRGUE10, BIRHAL10, CTCNSE} \\ & (2.234-2.851) \\ \text{Cl-Si(4)} & \textbf{Cl-Si-X_3 (monochloro)} & 2.072 & 2.075 & 0.009 & 2.066 & 2.078 & 5 \\ & \textbf{Cl_2-Si-X_2 and Cl_3-Si-X} & 2.020 & 2.012 & 0.015 & 2.007 & 2.036 & 5 \\ \text{Cl-Te} & \textbf{Cl-Te in range 2.34-2.60} & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ & \text{see also longer bonds in BARRIV, BOJPUL,} & & & & & & & & & & & & & & & & & & &$		BIHXIZ (2.357), CANLUY (2.749)							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cl-Se	see BIRGUE10, BIRHAL10, CTCNSE							
$\begin{array}{c} \text{Cl-SI(4)} & \text{Cl-SI-X}_3 \text{ (monochiloro)} & 2.072 & 2.075 & 0.009 & 2.066 & 2.078 & 5 \\ \text{Cl}_2\text{-Si-X}_2 \text{ and } \text{Cl}_3\text{-Si-X} & 2.020 & 2.012 & 0.015 & 2.007 & 2.036 & 5 \\ \text{Cl-Te} & \text{Cl-Te in range 2.34-2.60} & 2.520 & 2.515 & 0.034 & 2.493 & 2.537 & 22 & 36 \\ \text{see also longer bonds in BARRIV, BOJPUL,} & \text{CETUTE, EPHTEA, OPNTEC10 (2.73-2.94)} \\ \text{F-N(3)} & \text{F-N-C}_2 \text{ and } \text{F}_2\text{-N-C} & 1.406 & 1.404 & 0.016 & 1.395 & 1.416 & 9 \\ \text{F-P(6)} & \text{in hexafluorophosphate, PF}_6^- & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ \text{F-P(3)} & (\text{N} \simeq)_2 \text{P-F} (\text{N} \simeq \text{P aromatic}) & 1.495 & 1.497 & 0.016 & 1.481 & 1.510 & 10 \\ \text{F-S} & 43 \text{ observations in range 1.409-1.770 in a wide} \\ & \text{variety of environments; F-S(6) in} \\ \text{F}_2\text{-SO}_2\text{-C}_2 (\text{see FPSULF10, BETJOZ}) & 1.640 & 1.646 & 0.011 & 1.626 & 1.649 & 6 \\ \text{F-S(4) in } \text{F}_2\text{-S(-O)-N} (\text{see BUDTEZ}) & 1.527 & 1.528 & 0.004 & 1.524 & 1.530 & 24 & 37 \\ \text{F-Si(6)} & \text{in SiF}_6^{2-} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ \text{F-Si(5)} & \text{F-Si}^-\text{-X}_4 & 1.636 & 1.639 & 0.035 & 1.602 & 1.657 & 10 \\ \text{F-Si(4)} & \text{F-Si-X}_3 & 1.588 & 1.587 & 0.014 & 1.581 & 1.599 & 24 \\ \end{array}$	CL 5:(4)	(2.234-2.851)	2 0 7 2	2 075	0.000	2011	2.070	~	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CI = SI(4)	$CI = Si = X_3$ (monocmoro) CI = Si = X and $CI = Si = X$	2.072	2.075	0.009	2.000	2.078	5	
ClarteClarte in Targe 2.54–2.002.3202.3202.3130.0342.4932.3372236see also longer bonds in BARRIV, BOJPUL, CETUTE, EPHTEA, OPNTEC10 (2.73– 2.94)CETUTE, EPHTEA, OPNTEC10 (2.73– 2.94)2.94)1.4061.4040.0161.3951.4169F-N(3)F-N-C2 and F2-N-C1.4061.4040.0161.3951.4169F-P(6)in hexafluorophosphate, PF6 ⁻ 1.5791.5870.0251.5631.59872F-P(3)(N \simeq)2P-F (N \simeq P aromatic)1.4951.4970.0161.4811.51010F-S43 observations in range 1.409–1.770 in a wide variety of environments; F-S(6) in F2-SQ2-C2 (see FPSULF10, BETJOZ)1.6401.6460.0111.6261.6496F-S(4) in F2-S(=O)-N (see BUDTEZ)1.5271.5280.0041.5241.5302437F-Si(6)in SiF6 ²⁻ 1.6941.7010.0131.6771.7036F-Si(5)F-Si ⁻ -X41.6361.6390.0351.6021.65710F-Si(4)F-Si-X31.5881.5870.0141.5811.59924	Cl_Te	C_2 of X_2 and C_3 of X_4	2.020	2.012	0.013	2.007	2.030	22	26
$\begin{array}{c c} CETUTE, EPHTEA, OPNTEC10 (2.73-2.94) \\ F-N(3) & F-N-C_2 \text{ and } F_2-N-C & 1.406 & 1.404 & 0.016 & 1.395 & 1.416 & 9 \\ F-P(6) & \text{in hexafluorophosphate, } PF_6^- & 1.579 & 1.587 & 0.025 & 1.563 & 1.598 & 72 \\ F-P(3) & (N \simeq)_2 P-F (N \simeq P \text{ aromatic}) & 1.495 & 1.497 & 0.016 & 1.481 & 1.510 & 10 \\ F-S & 43 \text{ observations in range } 1.409-1.770 \text{ in a wide} \\ & variety of environments; } F-S(6) \text{ in} \\ F_2-SO_2-C_2 (see FPSULF10, BETJOZ) & 1.640 & 1.646 & 0.011 & 1.626 & 1.649 & 6 \\ F-S(4) \text{ in } F_2-S(-D)-N (see BUDTEZ) & 1.527 & 1.528 & 0.004 & 1.524 & 1.530 & 24 & 37 \\ F-Si(6) & \text{ in } SiF_6^{2-} & 1.694 & 1.701 & 0.013 & 1.677 & 1.703 & 6 \\ F-Si(5) & F-Si^X_4 & 1.636 & 1.639 & 0.035 & 1.602 & 1.657 & 10 \\ F-Si(4) & F-Si-X_3 & 1.588 & 1.587 & 0.014 & 1.581 & 1.599 & 24 \\ \end{array}$		see also longer bonds in BARRIV BOIPIII	2.520	2.515	0.034	2.493	2.337	22	30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CETUTE, EPHTEA, OPNTEC10 (2.73-							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2.94)							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F-N(3)	$F-N-C_2$ and F_2-N-C	1.406	1.404	0.016	1.395	1.416	9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F-P(6)	in hexafluorophosphate, PF_6^-	1.579	1.587	0.025	1.563	1.598	72	
F-S 43 observations in range 1.409—1.770 in a wide variety of environments; F-S(6) in F_2 -SO ₂ -C ₂ (see FPSULF10, BETJOZ) 1.640 1.646 0.011 1.626 1.649 6 F-S(4) in F ₂ -S(=O)-N (see BUDTEZ) 1.527 1.528 0.004 1.524 1.530 24 37 F-Si(6) in SiF ₆ ²⁻ 1.694 1.701 0.013 1.677 1.703 6 F-Si(5) F-Si ⁻ -X ₄ 1.636 1.639 0.035 1.602 1.657 10 F-Si(4) F-Si-X ₃ 1.588 1.587 0.014 1.581 1.599 24	F-P(3)	$(N \simeq)_2 P - F (N \simeq P \text{ aromatic})$	1.495	1.497	0.016	1.481	1.510	10	
Variety of environments; F-S(6) in F_2 -SO ₂ -C ₂ (see FPSULF10, BETJOZ)1.6460.0111.6261.6496F-S(4) in F ₂ -S(=O)-N (see BUDTEZ)1.5271.5280.0041.5241.5302437F-Si(6)in SiF ₆ ²⁻ 1.6941.7010.0131.6771.7036F-Si(5)F-Si ⁻ -X ₄ 1.6361.6390.0351.6021.65710F-Si(4)F-Si-X ₃ 1.5881.5870.0141.5811.59924	F-S	43 observations in range 1.409–1.770 in a wide							
$F_2-SO_2-C_2$ (see FFSOLF10, BE110Z)1.0401.0400.0111.0261.0496 $F-S(4)$ in $F_2-S(=O)-N$ (see BUDTEZ)1.5271.5280.0041.5241.5302437F-Si(6)in SiF_6^2-1.6941.7010.0131.6771.7036F-Si(5) $F-Si^X_4$ 1.6361.6390.0351.6021.65710F-Si(4) $F-Si-X_3$ 1.5881.5870.0141.5811.59924		variety of environments; $F-S(6)$ in F-SO = C (see EPSULE10 BETLO7)	1 6 40	1 6 4 6	0.011	1.696	1 6 4 0		
F-Si(6)in SiF_6^21.5271.5260.0041.5241.5302437F-Si(5) \mathbf{F} -Si^X_41.6941.7010.0131.6771.7036F-Si(4) \mathbf{F} -Si-X_31.5881.5870.0141.5811.59924		$r_2 = 3 \cup_2 = \cup_2$ (SEE FF3ULFIU, BEIJUZ) F=S(4) in F_=S(=0)=N (SEE RUDTE7)	1.040	1.040 1.579	0.011	1.020	1.049	0 74	27
F-Si(5)F-Si $^-X_4$ 1.6361.6390.0351.6021.65710F-Si(4)F-Si-X_31.5881.5870.0141.5811.59924	F-Si(6)	in SiF $_{a}^{2-}$	1.694	1.701	0.013	1.677	1.703	24 6	51
F-Si(4) F-Si-X ₃ 1.588 1.587 0.014 1.581 1.599 24	F-Si(5)	F-Si [~] -X ₄	1.636	1.639	0.035	1.602	1.657	10	
	F-Si(4)	F-Si-X ₃	1.588	1.587	0.014	1.581	1.599	24	

Bond	Substructure	d	т	σ	q_1	$q_{}$	n	Note
F–Te	see CUCPIZ ($F-Te(6) = 1.942, 1.937$).				**	74		
	FPHTEL (F-Te(4) = 2.006)							
H-N(4)	$X_3 - N^+ - H$	1.033	1.036	0.022	1.026	1.045	87	21
H-N(3)	X ₂ -N-H	1.009	1.010	0.019	0.997	1.023	95	21
H–O(2)	in alcohols C*-O-H	0.967	0.969	0.010	0.959	0.974	63	21
	С#−О−Н	0.967	0.970	0.010	0.959	0.974	73	21
	in acids O=C-O-H	1.015	1.017	0.017	1.001	1.031	16	21,38
1-1 1-1	$\ln l_3$	2.917	2.918	0.011	2.907	2.927	6	
I-N	see BZPRIB, CMBIDZ, HMIIII, HMINII,							
τO	$\mathbf{V} = \mathbf{O} (\text{cas} \mathbf{P} 7 \mathbf{D} \mathbf{P} \mathbf{I} \mathbf{O} (\text{cas} \mathbf{P} 7 \mathbf{D} \mathbf{P} \mathbf{I} \mathbf{O} (\text{cas} \mathbf{P} 7 \mathbf{D} \mathbf{P} \mathbf{I} \mathbf{O} (\text{cas} \mathbf{I} \mathbf{I} \mathbf{O} \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} O$	2 1 4 4	2 1 4 4	0.028	2 1 2 7	2 1 6 4	6	
1-0	A = I = O (see DZI KIB, CAJMAD, IDZDACII)	2.144	2.144	0.028	2.127	2.104	0	
$I_{P(3)}$	$101 10_6$ SEC BOV MEE (1.829-1.912) see CEHKAB (2.490-2.403)							Ŧ
I-I (5)	see DTHIRR10 (2.687) ISUREA10 (2.629)							T
15	BZTPPI (3 251)							
I-Te(4)	I-Te-X ₁	2.926	2.928	0.026	2.902	2.944	8	
N(4)–Ń(3)	$X_3 - N^+ - N^0 - X_2$ (N ⁰ planar)	1.414	1.414	0.005	1.412	1.418	13	
N(3)–N(3)	$(C)(C,H)-N_a-N_b-(C)(C,H)$							5,39
	N _a , N _b pyramidal	1.454	1.452	0.021	1.444	1.457	44	40
	N _a pyramidal, N _b planar	1.420	1.420	0.015	1.407	1.433	68	40
	N _a , N _b planar	1.401	1.401	0.018	1.384	1.418	40	40
NI(2) NI(2)	overall	1.425	1.425	0.027	1.407	1.443	139	
$\ln(3) - \ln(2)$	in pyrazole $(N1-N2)$	1.300	1.300	0.019	1.350	1.375	20	
$N(2) \sim N(2)$	In pyridazinium (N1 \simeq N2) N \approx N (aromatic) in pyridazina	1.330	1.349	0.010	1.345	1.361	/	
I(2) = I(2)	with C H as ortho substituents	1 304	1 300	0.019	1 287	1 3 26	6	
	with NCl as ortho substituents	1.368	1.300	0.019	1.267	1.320	9	
N(2)=N(2)	C#–N=N–C#	1.500	1.575	0.011	1.502	1.575	,	
() ()	cis	1.245	1.244	0.009	1.239	1.252	21	
	trans	1.222	1.222	0.006	1.218	1.227	6	
	(overall)	1.240	1.241	0.012	1.230	1.251	27	
	Car–N=N–Car	1.255	1.253	0.016	1.247	1.262	13	
	X-N=N=N (azides)	1.216	1.226	0.028	1.202	1.237	19	
N(2)=N(1)	X-N=N=N (azides)	1.124	1.128	0.015	1.114	1.137	19	
N(3) - O(2)	$(C,H)_2$ -N-OH (Nsp ² : planar)	1.396	1.394	0.012	1.390	1.401	28	
	$(N_{2}-N_{-}O_{-}O_{-}O_{-}O_{-}O_{-}O_{-}O_{-}O$	1 462	1 465	0.012	1 457	1 460	22	
	$(Nsp^2; planar)$	1.405	1.403	0.012	1.437	1.408	12	
	in furoxan (N2 $-$ O1)	1 4 3 8	1.374	0.009	1.388	1.409	14	
N(3) - O(1)	$(\mathbf{C} \simeq)_2 \mathbf{N}^+ - \mathbf{O}^-$ in pyridine N-oxides	1.304	1.299	0.015	1.291	1.316	11	
	in furoxan $(^+N2-06^-)$	1.234	1.234	0.008	1.228	1.240	14	
N(2)–O(2)	in oximes							
	(C#) ₂ −C=N−OH	1.416	1.418	0.006	1.416	1.420	7	
	$(\mathbf{H})(\mathbf{C}sp^2) - \mathbf{C} = \mathbf{N} - \mathbf{O}\mathbf{H}$	1.390	1.390	0.011	1.380	1.401	20	
	$(C#)(Csp^2)-C=N-OH$	1.402	1.403	0.010	1.393	1.410	18	
	$(Csp^2)_2 - C = N - OH$	1.3/8	1.3//	0.017	1.365	1.393	16	
	$(C,\Pi)_2 - C = N - OH (Overall)$	1.394	1.393	0.018	1.379	1.408	0/	
	in furevan $(O1-N5)$	1.385	1.385	0.013	1.370	1.392	12	
	in isoxazole $(O1-N2)$	1.300	1.330	0.011	1.370	1.388	9	
N(3)=O(1)	in nitrate ions NO ₃	1.239	1.240	0.020	1.227	1.251	105	
- (-) - (-)	in nitro groups			0.0_0				
	$C^* - NO_2$	1.212	1.214	0.012	1.206	1.221	84	
	C#-NO ₂	1.210	1.210	0.011	1.203	1.218	251	
	$Car-NO_2$	1.217	1.218	0.011	1.211	1.215	1 116	
	$C-NO_2$ (overall)	1.218	1.219	0.013	1.210	1.226	1 733	
N(3) - P(4)	$X_2 - P(=X) - NX_2$	1 (50	1.681			4 (70		
	Nsp ² : planar	1.652	1.651	0.024	1.634	1.670	205	
	(overall)	1.083	1.083	0.005	1.080	1.080	258	
	(Overall) subsets of this group are:	1.002	1.002	0.029	1.059	1.062	558	
	$O_{a}-P(=S)-NX_{a}$	1.628	1.624	0.015	1.615	1.634	9	
	$C - P(=S) - (NX_2)_2$	1.691	1.694	0.018	1.678	1.703	28	
	$O-P(=S)-(NX_2)_2$	1.652	1.654	0.014	1.642	1.664	28	
	$P(=O) - (NX_2)_3^{2/2}$	1.663	1.668	0.026	1.640	1.679	78	
N(3)-P(3)	$-NX-P(-X)-NX-P(-X)-(P_2N_2 ring)$	1.730	1.721	0.017	1.716	1.748	20	
	$-NX-P(=S)-NX-P(=S)-(P_2N_2 ring)$	1.697	1.697	0.015	1.690	1.703	44	
	in P-substituted phosphazenes:			.				
	$(N \simeq)_2 P - N$ (amino)	1.637	1.638	0.014	1.625	1.651	16	
NI(2)_D(4)	(aziridinyi)	1.0/2	1.0/4	0.010	1.000	1.0/0	15	
IN(∠)=r(4)	$r_{13} - r = 1 = r - r_{13}$	1.3/1	1.3/3	0.013	1.303	1.580	00	

S16

Bond	Substructure	d	т	σ	q_1	q_u	n	Note
N(2)=P(3)	$Ph_3-P=N-C,S$	1.599	1.597	0.018	1.580	1.615	7	
$N(2) \simeq P(3)$	$N \simeq P$ aromatic							
	in phosphazenes	1.582	1.582	0.019	1.571	1.594	126	
	$in P \simeq N \simeq S$	1.604	1.606	0.009	1.594	1.612	36	25
N(3)-S(4)	$C = SO_2 = NH_2$	1.000	1.601	0.012	1.591	1.610	14	33
	$C = SO_2 = NH = C_{\#}$	1.033	1.033	0.019	1.015	1.052	4/	35
N(3) = S(2)	$C-SO_2-N-C(\#)_2$ $C-S-NX = Nsn^2$: planar	1.042	1.041	0.024	1.623	1 722	20	23
N(3) - 3(2)	(for N_{2n}^{n} nyramidal see MODIAZ: 1.765)	1./10	1.707	0.017	1.070	1.722	22	25
	$X-S-NX_2$ Nsp ² : planar	1.707	1.705	0.012	1.699	1.715	30	23
N(2)-S(2)	C=N-S-X	1.656	1.663	0.027	1.632	1.677	36	
$N(2) \simeq S(2)$	$N \simeq S$ aromatic in $P \simeq N \simeq S$	1.560	1.558	0.011	1.554	1.563	37	
N(2) = S(2)	N=S in N=S=N and N=S=S	1.541	1.546	0.022	1.521	1.558	37	
N(3)–Se	see COJCUZ (1.830), DSEMOR10 (1.846,							
	1.852), MORTRS10 (1.841)							
N(2)–Se	see SEBZQI (1.805), NAPSEZ10 (1.809, 1.820)							
N(2)=Se	see CISMUM (1.790, 1.791)							
N(3)-Si(5)	see DMESIP01, BOJLER, CASSAQ,							
	CASYOK, CECXEN, CINIEY, CIPBUY,							
N(2) S:(4)	FMESIB, MNPSIL, PNPOSI (1.973-2.344)	1 749	1 746	0.022	1 725	1 757	170	
N(3) - 3I(4)	$\Lambda_3 - SI - I \Lambda_2$ (Overall) subsets of this group are:	1./40	1./40	0.022	1.755	1.757	170	
	X _Si_NHX	1 714	1 719	0.014	1 702	1 727	16	
	$X_3 = Si = NX = Si = X_3$ acyclic	1.743	1.744	0.014	1.731	1.755	45	
	N-Si-N in 4-membered rings	1.742	1.742	0.009	1.735	1.748	53	
	N-Si-N in 5-membered rings	1.741	1.742	0.019	1.726	1.749	33	
N(2)-Si(4)	$X_3-Si-N^Si-X_3$	1.711	1.712	0.019	1.693	1.729	15	
N-Te	see ACLTEP (2.402), BIBLAZ (1.980),							
	CESSAU (2.023)							
O(2)–O(2)	С*-О-О-С*,Н							
	$\tau(OO) = 70-85^{\circ}$	1.464	1.464	0.009	1.458	1.472	12	
	$\tau(OO)$ ca. 180°	1.482	1.480	0.005	1.478	1.486	5	
	overall	1.469	1.471	0.012	1.461	1.478	17	
	O=C-O-O-C=O see ACBZPO01 (1.446),							
	CEYLUN (1.452), CIMHIP (1.454)	1 406	1 400	0.005	1 400	1 400	10	
O(2) $B(5)$		1.490	1.499	0.005	1.490	1.499	10	41
O(2) - F(3)	$\Lambda - \Gamma - (U\Lambda)_4$							41
	avial	1 689	1 685	0.024	1 675	1 712	20	
	equatorial	1.609	1.603	0.024	1.604	1.628	20	
	square pyramidal	1.662	1.661	0.020	1.649	1.673	28	
O(2)-P(4)	$C-O-P(\simeq O)_3^{2-}$	1.621	1.622	0.007	1.615	1.628	12	
	$(H-O)_2 - P(\simeq O)_2$	1.560	1.561	0.009	1.555	1.566	16	
	$(\mathbf{C}-\mathbf{O})_2 - \mathbf{P}(\simeq \mathbf{O})_2$	1.608	1.607	0.013	1.599	1.615	16	
	(C# -O) ₃ - P =O	1.558	1.554	0.011	1.550	1.564	30	
	$(Car-O)_3-P=O$	1.587	1.588	0.014	1.572	1.599	19	
	$X-O-P(=O)-(C,N)_2$	1.590	1.585	0.016	1.577	1.601	33	
	$(X-O)_2-P(=O)-(C,N)$	1.571	1.572	0.013	1.563	1.579	70	
O(2) - P(3)	$(N \simeq)_2 P - O - C (N \simeq P \text{ aromatic})$	1.573	1.573	0.011	1.563	1.584	16	
O(1)=P(4)	$(U, O) = \mathbf{P}(\simeq \mathbf{O})_3^2$ (declocalized)	1.513	1.512	0.008	1.508	1.518	42	
	$(\mathbf{H} - \mathbf{O})_2 - \mathbf{P}(\simeq \mathbf{O})_2$ (delocalized) $(\mathbf{C} - \mathbf{O}) = \mathbf{P}(\simeq \mathbf{O})^{-1}$ (delocalized)	1.503	1.303	0.005	1.499	1.308	10	
	$(C-O)_2 - \mathbf{P}(\simeq O)_2$ (delocalized)	1.465	1.485	0.008	1.4/4	1.490	10	
	$(C-O)_3 - I - O$	1 489	1.446	0.007	1.440	1.452	72	
	$N_3 - P = O$	1.461	1.460	0.010	1 449	1.470	26	
	$(\mathbf{C})_{2}(\mathbf{N}) - \mathbf{P} = \mathbf{O}$	1.487	1.489	0.007	1.479	1.493	5	
	$(C,N)_{2}(O)-P=O$	1.467	1.465	0.007	1.462	1.472	33	
	$(C,N)(O)_2 - P = O$	1.457	1.458	0.009	1.454	1.462	35	
O(2)–S(4)	$C-O-SO_2-C$	1.577	1.576	0.015	1.566	1.584	41	
	$C-O-SO_2-CH_3$	1.569	1.569	0.013	1.556	1.582	7	
	$C-O-SO_2-Car$	1.580	1.578	0.015	1.571	1.588	27	
O(1)=S(4)	$C-SO_2-C$	1.436	1.437	0.010	1.431	1.442	316	42
	$X - SO_2 - NX_2$	1.428	1.428	0.010	1.422	1.434	326	
	$C = SO_2 = N = (C, H)_2$	1.430	1.430	0.009	1.425	1.435	206	
	$(-50_2 - 0 - 0)$	1.423	1.423	0.008	1.418	1.428	82	
O(1) = S(3)	$C_{-S(=0)-C}$	1.472	1.4/3	0.013	1.403	1.461	004	5
O_{Se}	See BAPPAL RIRGUEIO RIDUALIO	1.77/	1.770	0.015	1.707	1.505	70	5
0-36	CXMSEO, DGLYSE, SPSEBU (1.597 for							
0(2) 8:(5)	$ \begin{array}{l} \textbf{U} = \textbf{Se} \text{ to } 1.9 / 4 \text{ lor } \textbf{U} = \textbf{Se} \\ (\textbf{X} = \textbf{O}) = \textbf{Si}_{-}(\textbf{N}) (\textbf{C}) \\ \end{array} $	1 667	1 650	0.022	1 660	1 675	21	
O(2) - Si(3) O(2) - Si(4)	$X_{-} - Si_{-} O - X$ (overall)	1.005	1.058	0.023	1.050	1.003	21 101	
		1.001	1.050	0.022	1.017	1.040	1/1	

Bond	Substructure	d	т	σ	q_1	$q_{\rm m}$	п	Note
O(2)-Si(4)	subsets of this group are:					10		
	X ₃ -Si-O-C#	1.645	1.647	0.012	1.634	1.652	29	
	$X_3 - Si - O - Si - X_3$	1.622	1.625	0.014	0.614	1.631	70	
	X ₃ -Si-O-O-Si-X ₃	1.680	1.676	0.008	1.673	1.688	10	
O(2)-Te(6)	$(X-\tilde{O})_{6}-Te$	1.927	1.927	0.020	1.908	1.942	16	
O(2)-Te(4)	$(X-O)_2$ -Te-X,	2.133	2.136	0.054	2.078	2.177	12	
P(4) - P(4)	X ₁ -P-P-X ₂ 2256 2259 0.025 2.243 2.277		6					
P(4) - P(3)	see CECHEX (2.197), COZPIQ (2.249)						Ū	
P(3) - P(3)	$X_2 - P - P - X_2$	2.214	2.210	0.022	2.200	2.224	41	
P(4) = P(4)	see BUTSUE (2.054)							
P(3)=P(3)	see BALXOB (2.034)							
P(4)=S(1)	C ₃ - P=S	1.954	1.952	0.005	1.950	1.957	13	
	$(N,O)_2(C)-P=S$	1.922	1.924	0.014	1.913	1.927	26	
	$(N,O)_3$ -P=S	1.913	1.914	0.014	1.906	1.921	50	
P(4)=Se(1)	X ₃ -P=Se	2.093	2.099	0.019	2.075	2.108	12	
P(3)-Si(4)	X_2 - P -Si- X_3 : 3- and 4-rings	2.264	2.260	0.019	2.249	2.283	22	
	excluded (see BOPFER, BOPFIV, CASTOF10,							
	COZVIW: 2.201-2.317)							
P(4)=1e(1)	see MOPHTE (2.356), TTEBPZ (2.327)							
S(2) - S(2)		2 0 2 1	2.020	0.015	0.001			
	t(SS) = 75 - 105	2.031	2.029	0.015	2.021	2.038	46	
	t(SS) = 0 - 20	2.070	2.068	0.022	2.057	2.077	28	
	(overall)	2.048	2.045	0.026	2.028	2.068	99	
S(2) $S(1)$	In porysulphide chain-5-5-5-	2.031	2.050	0.022	2.037	2.065	126	
S(2) = S(1)	A = 1 = 3 = 3 (2.264, 2.260)	1.097	1.890	0.012	1.887	1.908	3	
$S = S_{0}(2)$	$X = S_{0} = S_{0} (any)$	2 102	2 105	0.015	2 1 7 4	2 207	0	
S=S(2) S(2) $S(4)$	X = S(ally)	2.193	2.193	0.013	2.174	2.207	10	
S(2) = S(4) $S(2) = T_{0}$	Λ_3 -SI-S- Λ	2.145	2.136	0.020	2.130	2.138	19	
5(2)-10	X-S-Te (any) X-S Te (any)	2.403	2.400	0.022	2.303	2.424	10	
Se(2) = Se(2)	X = S = S = Y	2.082	2.080	0.033	2.075	2.094	20	
Se(2) - Se(2) Se(2) - Te(2)	A-SC-SC-A	2.540	2.340	0.024	2.315	2.301	15	4
Si(A) - Se(A)	$\mathbf{X} = \mathbf{Si} = \mathbf{Si} = \mathbf{X} = 3$ membered rings excluded:	2 3 50	2 3 50	0.012	2 240	2 266	42	1
51(7)-50(7)	x_3 -Si- x_3 5-memotred rings excluded.	2.337	2.337	0.012	2.347	2.300	42	
Te-Te	see CAHJOK (2.751, 2.704)							
			<u>-</u>					

Appendix 1. (Footnotes to Table)

1. Sample dominated by B-CH₃. For longer bonds in B⁻-CH₃ see LITMEB10 [B(4)-CH₃ = 1.621--1.644Å].

- 2. $p(\pi)-p(\pi)$ Bonding with Bsp^2 and Nsp^2 coplanar ($\tau BN = 0 \pm 15^\circ$) predominates. See G. Schmidt, R. Boese, and D. Bläser, Z. Naturforsch., 1982, 37b, 1230.
- 3. 84 observations range from 1.38 to 1.61 Å and individual values depend on substituents on B and O. For a discussion of borinic acid adducts see S. J. Rettig and J. Trotter, Can. J. Chem., 1982, 60, 2957.
- 4. See M. Kaftory in 'The Chemistry of Functional Groups. Supplement D: The Chemistry of Halides, Pseudohalides, and Azides' eds. S. Patai and Z. Rappoport, Wiley: New York, 1983, Part 2, ch. 24.
- 5. Bonds which are endocyclic or exocyclic to any 3- or 4-membered rings have been omitted from all averages in this section.
- 6. The overall average given here is for $Csp^3 Csp^3$ bonds which carry only C or H substituents. The value cited reflects the relative abundance of each 'substitution' group. The 'mean of means' for the 9 subgroups is 1.538 ($\sigma = 0.022$) Å.
- 7. See F. H. Allen, (a) Acta Crystallogr., 1980, B36, 81; (b) 1981, B37, 890.
- 8. See F. H. Allen, Acta Crystallogr., 1984, B40, 64.
- 9. See F. H. Allen, Tetrahedron, 1982, 38, 2843.
- 10. See F. H. Allen, Tetrahedron, 1982, 38, 645.
- 11. Cyclopropanones and cyclobutanones excluded.
- 12. See W. B. Schweizer and J. D. Dunitz, Helv. Chim. Acta, 1982, 65, 1547.
- 13. See L. Norskov-Lauritsen, H.-B. Bürgi, P. Hoffmann, and H. R. Schmidt, Helv. Chim. Acta, 1985, 68, 76.
- 14. See P. Chakrabarti and J. D. Dunitz, Helv. Chim. Acta, 1982, 65, 1555.
- 15. See J. L. Hencher in 'The Chemistry of the C=C Triple Bond,' ed. S. Patai, Wiley, New York, 1978, ch. 2.
- 16. Conjugated: torsion angle about central C-C single bond is $0 \pm 20^{\circ}$ (cis) or $180 \pm 20^{\circ}$ (trans).
- 17. Unconjugated: torsion angle about central C-C single bond is 20-160°.
- 18. Other conjugative substituents excluded.
- 19. TCNQ is tetracyanoquinodimethane.
- 20. No difference detected between $C2 \simeq C3$ and $C3 \simeq C4$ bonds.
- 21. Derived from neutron diffraction results only.
- 22. Nsp³: pyramidal; mean valence angle at N is in range 108—114°. 23. Nsp²: planar; mean valence angle at N is $\ge 117.5^{\circ}$.
- 24. Cyclic and acyclic peptides.
- 25. See R. H. Blessing, J. Am. Chem. Soc., 1983, 105, 2776.
- 26. See L. Lebioda, Acta Crystallogr., 1980, B36, 271.
- 27. n = 3 or 4, *i.e.* tri- or tetra-substituted ureas.
- 28. Overall value also includes structures with mean valence angle at N in the range 115-118°.
- 29. See F. H. Allen and A. J. Kirby, J. Am. Chem. Soc., 1984, 106, 6197.
- 30. See A. J. Kirby, 'The Anomeric Effect and Related Stereoelectronic Effects at Oxygen,' Springer, Berlin, 1983.
- 31. See B. Fuchs, L. Schleifer, and E. Tartakovsky, Nouv. J. Chim., 1984, 8, 275.

- 32. See S. C. Nyburg and C. H. Faerman, J. Mol. Struct., 1986, 140, 347.
- 33. Sample dominated by $P-CH_3$ and $P-CH_2-C$. 34. Sample dominated by $C^* = methyl$.
- 35. See A. Kalman, M. Czugler, and G. Argay, Acta Crystallogr., 1981, B37, 868.
- 36. Bimodal distribution resolved into 22 'short' bonds and 5 longer outliers.
- 37. All 24 observations come from BUDTEZ.
- 38. 'Long' O-H bonds in centrosymmetric O --- H --- O H-bonded dimers are excluded.
- 39. N-N bond length also dependent on torsion angle about N-N bond and on nature of substituent C atoms; these effects are ignored here.
- 40. N pyramidal has average angle at N in range $100-113.5^\circ$; N planar has average angle of $\ge 117.5^\circ$.
- 41. See R. R. Holmes and J. A. Deiters, J. Amer. Chem. Soc., 1977, 99, 3318.
- 42. No detectable variation in S=O bond length with type of C-substituent.

Appendix 2.

Short-form references to individual CSD entries cited by reference code in the Table. A full list of CSD bibliographic entries is given in SUP 56701.

ACBZPO01	J. Am. Chem. Soc., 1975, 97, 6729.
ACLTEP	I Organomet Chem 1980 184 417
ASAZOC	Dokt Akad Nauk SSSP 1070 240 120
ASALUC	Doki. Akuu. Wuuk SSSK, 1979, 249, 120.
BALXOB	J. Am. Chem. Soc., 1981, 103, 4587.
BAPPAJ	Inorg. Chem., 1981, 20, 30/1.
BARRIV	Acta Chem. Scand., Ser. A, 1981, 35, 443.
BAWFUA	Cryst. Struct. Commun., 1981, 10, 1345.
BAWGAH	Cryst. Struct. Commun., 1981, 10, 1353.
BECTAE	J. Org. Chem., 1981, 46 , 5048, 1981.
BELNIP	Z. Naturforsch., Teil B, 1982, 37, 299.
BEMLIO	Chem. Ber., 1982, 115, 1126.
BEPZEB	Cryst. Struct. Commun., 1982, 11, 175.
BETJOZ	J. Am. Chem. Soc., 1982, 104, 1683.
BETUTE10	Acta Chem Scand Ser A 1976 30 719
BIRI A7	Zh Strukt Khim 1981 22 118
BICGEZ	Z Anora Alla Cham 1987 A86 90
DIUVIZ	L. Cham Son Cham Commun 1082, 90.
	7. Nat afairst Till P 1092 29 20
BIRGUEIU	Z. Naturforsch., Tell B, 1985, 38, 20.
BIRHALIU	Z. Naturforsch., Teil B, 1982, 37, 1410.
BIZJAV	J. Organomet. Chem., 1982, 238, Cl.
BOGPOC	Z. Naturforsch., Teil B, 1982, 37, 1402.
BOGSUL	Z. Naturforsch., Teil B, 1982, 37, 1230.
BOJLER	Z. Anorg. Allg. Chem., 1982, 493 , 53.
BOJPUL	Acta Chem. Scand., Ser. A, 1982, 36 , 829.
BOPFER	Chem. Ber., 1983, 116, 146.
BOPFIV	Chem. Ber., 1983, 116, 146.
BOVMEE	Acta Crystallogr., Sect. B, 1982, 38, 1048.
BOUINI	Acta Crystallogr., Sect. B, 1979, 35, 1930.
BTUPTE	Acta Chem. Scand., Ser. A, 1975, 29, 738.
BUDTEZ	Z. Naturforsch., Teil B. 1983, 38, 454.
BUPSIB10	Z. Anorg. Allg. Chem., 1981, 474, 31.
BUSHAY	Z. Naturforsch., Teil, B. 1983, 38, 692.
BUTHAZ10	Inorg Chem. 1984. 23, 2582
BUTSUE	I Chem Soc Chem Commun 1983 862
BUWZUO	Acta Chem Scand Ser A 1983 37 219
BZDDIB	Z Naturforsch Teil B 1081 36 022
	L. Walarjorsch., Tell D, 1961, 30, 922.
	Lucra Chow 1092 22 1900
CANJOK	<i>Chem.</i> , 1983, 22, 1809.
CAJMAB	Chem. Z, 1985, 107, 109.
CANLUY	Tetranearon Lett., 1983, 24, 4337.
CASSAQ	J. Struct. Chem., 1983, 2, 101.
CASTOF10	Acta Crystallogr., Sect. C, 1984, 40, 1879.
CASYOK	J. Struct. Chem., 1983, 2, 107.
CECHEX	Z. Anorg. Allg. Chem., 1984, 508 , 61.
CECXEN	J. Struct. Chem., 1983, 2 , 207.
CEDCUJ	J. Org. Chem., 1983, 48, 5149.
CEHKAB	Z. Naturforsch., Teil B, 1984, 39, 139.
CELDOM	Acta Crystallogr., Sect. C, 1984, 40, 556.
CESSAU	Acta Crystallogr., Sect. C, 1984, 40, 653.
CETTAW	Chem. Ber., 1984, 117, 1089.
CETUTE	Acta Chem. Scand., Ser A, 1975, 29, 763.
CEYLUN	Izv. Akad. Nauk SSSR, Ser. Khim., 1983, 2744.
CIFZUM	Acta Chem. Scand., Ser A. 1984, 38, 289.
CIHRAM	Angew. Chem. Int. Ed. Engl., 1984, 23, 302
CILRUK	I Chem Soc. Chem Commun 1984 1073
CILSAR	I Chem Soc. Chem Commun. 1984 1023.
CIMHIP	Acta Crystallogr C 1984 40 1458
CINTEV	Dokl Akad Nauk SSSP 1081 974 615
CIPRUV	DUNI. ANUU. MUUN DOON, 1704, 414, 013.
	I Struct Cham 1083 7 781
CISMUM	J. Struct. Chem., 1983, 2, 281. Z. Naturforsch. Tail B 1984, 20, 485

CISTED	Z. Anorg. Allg. Chem., 1984, 511, 95.
CIWYIO	Inorg Chem 1984 23 1946
CIVEOF	Inorg Chem 1984 23 1790
CMPIDZ	L Org. Cham. 1070 A4 1447
CODDEE	J. Org. Chem., 1975, 44, 1447.
CODDEE	Z. Naturjorsch., Tell B, 1984, 39, 1257.
CODDII	Z. Naturforsch., Teil B, 1984, 39, 1257.
COFVOI	Z. Naturforsch., Teil B, 1984, 39, 1027.
COJCUZ	Chem. Ber., 1984, 117, 2686.
COSDIX	Z. Naturforsch., Teil B, 1984, 39 , 1344.
COZPIQ	Chem. Ber., 1984, 117, 2063.
COZVIW	Z. Anorg. Allg. Chem., 1984, 515, 7.
CTCNSE	J. Am. Chem. Soc., 1980, 102, 5430.
CUCPIZ	J. Am. Chem. Soc., 1984, 1 06 , 7529.
CUDLOC	J. Cryst. Spectrosc., 1985, 15, 53.
CUDLUI	L. Cryst. Spectrosc., 1985, 15, 53.
CUGBAH	Acta Crystallogr Sect C 1985 41 476
CXMSEO	Acta Crystallogr. Sect. B 1973 29 595
DGLVSE	Acta Crystallogr. Sect. B, 1975, 29, 595.
DULISE	Acta Crystallogr., Sect. D, 1975, 51, 1765.
DMESIPUI	Acta Crystallogr., Sect. C, 1984, 40, 895.
DSEMORIO	J. Chem. Soc., Dation Trans., 1980, 628.
DIHIBRIU	Inorg. Chem., 19/1, 10, 69/.
EPHTEA	Inorg. Chem., 1980, 19, 2487.
ESEARS	J. Chem. Soc. C, 1971, 1511.
ETEARS	J. Chem. Soc. C, 1971, 1511.
FMESIB	J. Organomet. Chem., 1980, 197, 275.
FPHTEL	J. Chem. Soc., Dalton Trans., 1980, 2306.
FPSULF10	J. Am. Chem. Soc., 1982, 104, 1683.
HCLENE10	Acta Crystallogr., Sect. B, 1982, 38, 3139.
HMTITI	Acta Crystallogr., Sect. B, 1975, 31, 1505.
HMTNTI	Z. Anorg. Allg. Chem., 1974, 409, 237.
HXPASC	J. Chem. Soc., Dalton Trans., 1975, 1381.
IBZDAC11	J. Chem. Soc., Dalton Trans., 1979, 854.
IFORAM	Monatsh. Chem., 1974, 105, 621.
IODMAM	Acta Crystallogr Sect B 1977 33 3209
IPMUDS	Acta Crystallogr, Sect. B, 1973, 29, 2128
ISURFA10	Acta Crystallogr, Sect. B, 1972, 28, 643
LITMERIO	I Am Chem Soc 1975 97 6401
MESIAD	7 Naturforsch Tail B 1980 35 789
METAMM	Acta Crystalloar 1964 17 1336
MNDSH	I Am Cham Soc. 1060 01 4134
MODIAZ	J. Am. Chem. 50C., 1909, 91, 4154.
MODIAL	J. Helerocyci. Chem., 1960, 17, 1217.
MOPHIE	Acta Chem. Scana., Ser. A, 1980, 34, 555.
MORIKSIU	J. Chem. Soc., Dation Trans., 1980, 628.
NAPSEZIU	J. Am. Chem. Soc., 1980, 102, 5070.
NBBZAM	Z. Naturforsch., Teil B, 1977, 32, 1416.
OPIMAS	Aust. J. Chem., 19/7, 30, 2417.
OPNIEC10	J. Chem. Soc., Dalton Trans., 1982, 251.
PHASCL	Acta Crystallogr., Sect. B, 1981, 37, 1357.
PHASOC01	Aust. J. Chem., 1975, 28, 15.
PNPOSI	J. Am. Chem. Soc., 1968, 90, 5102.
SEBZQI	J. Chem. Soc., Chem. Commun., 1977, 325.
SPSEBU	Acta Chem. Scand., Ser. A, 1979, 33, 403.
TEACBR	Cryst. Struct. Commun., 1974, 3, 753.
THINBR	J. Am. Chem. Soc., 1970, 92, 4002.
TMPBTI	Acta Crystallogr., Sect. B, 1975, 31, 1116.
TPASSN	J. Chem. Soc., Dalton Trans., 1977, 514.
TPASTB	Cryst. Struct. Commun., 1976, 5, 39.
TPHOSI	Z. Naturforsch., Teil B. 1979, 34, 1064.
TTEBPZ	Z. Naturforsch., Teil B, 1979, 34, 256.
ZCMXSP	Cryst. Struct. Commun., 1977, 6, 93.

References

- 1 L. E. Sutton, 'Tables of Interatomic Distances and Configuration in Molecules and Ions,' Chemical Society Special Publication No. 11, Chemical Society, London, 1958.
- 2 L. E. Sutton, 'Tables of Interatomic Distances and Configuration in Molecules and Ions,' Chemical Society Special Publication No. 18, Chemical Society, London, 1965.
- 3 O. Kennard in ¹International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1962, vol. III, pp. 275–276.
- 4 F. H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B. G. Hummelink-Peters, O. Kennard, W. D. S. Motherwell, J. R. Rodgers, and D. G. Watson, *Acta Crystallogr.*, 1979, **B35**, 2331.
- 5 O. Kennard, D. G. Watson, F. H. Allen, N. W. Isaacs, W. D. S. Motherwell, R. C. Pettersen, and W. G. Town, 'Molecular Structures

- 6 M. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwendemann, D. A. Ramsay, F. J. Lovas, W. J. Lafferty, and A. G. Maki, J. Phys. Chem. Ref. Data, 1979, 8, 619.
- 7 'Cambridge Crystallographic Data Centre User Manual,' Cambridge University, 1978, 2nd edn.
- 8 R. Taylor and O. Kennard, Acta Crystallogr., 1983, B39, 517.
- 9 R. Taylor and O. Kennard, Acta Crystallogr., 1985, A41, 85.
- 10 R. Taylor and O. Kennard, J. Chem. Inf. Comp. Sci., 1986, 26, 28.
- 11 G. Bergerhoff, R. Hundt, R. Sievers, and I. D. Brown, J. Chem. Inf. Comp. Sci., 1983, 23, 66.

Received 6th February 1987; Paper 7/194